博弈论练习4 Calendar Game(SG函数)】的更多相关文章

Calendar Game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2766    Accepted Submission(s): 1594 Problem Description Adam and Eve enter this year’s ACM International Collegiate Programming Con…
说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里我们讨论的是公平游戏(ICG游戏:Impartial Combinatorial Games),满足: 1.双方每步的限制相同(轮流) 2.游戏有尽头 对于当前局面的玩家如果能有必胜策略,那就是N局面(反之,P局面) SG函数 每一种决策以及后面的所有可能可以抽象成有向无环图,而sg函数的计算就类似图上dp的…
目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合法操作,则这名选手判负: 则称该游戏为一个公平组合游戏. Nim游戏 有若干堆石子,每堆石子的数量都是有限的,合法的移动是"选择一堆石子并拿走若干颗(不能不拿)",如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动). mex(minimal exdudant…
复习csp2019的时候稍微看了看博弈论,发现自己对于sg函数的理解完全不到位 有些定义甚至想都没想过 于是就口胡了一篇blog来安慰虚弱的自己 Question 1 对于一个满足拓扑性质的公平组合游戏 若定义一个函数\(f\),\(f(P状态)=0\) 假设当前状态为\(a\),它对局面的定义合法 那么\(f=sg\) 可以发现,它就是\(Muti-sg\)问题的核心,接下来我们希望证明这个问题的正确性 首先,先弄清几个定义 对于后继 指的是一步转移到的状态 后继一定不会等于当前状态 对于局面…
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律等方法去解决博弈问题,而是需要学习一些博弈论中基本的定理,来找到他们的共同特点 那么就先介绍几个最基本的定理(也可以叫常识)吧 基本定理 ICG游戏 1.游戏有两个人参与,二者轮流做出决策.且这两个人的决策都对自己最有利. 2.当有一人无法做出决策时游戏结束,无法做出决策的人输.无论二者如何做出决策…
今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这句话没有什么卯月) 在OI中,博弈论的主要应用是一些经典的模型,以及sg函数,sj定理的应用. 首先我们来看博弈论最为经典的模型之一:Nim游戏 有n堆石子,每次可以从其中任意一堆石子中取出若干块石子(可以取完),不能不取. 最后无石子可取者为输家.假设两人都按最优情况走,问是否先手必胜. 为了计算…
写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的NIM游戏不得不提一下,这也是要不断提醒自己别忘了NIM游戏才是SG函数由来的核心关键! 1. 若干堆石头. 2. 甲和乙轮流从任意堆中取任意个石头. 3. 谁不能取就输. 分析: 对于一个博弈来说,P-position表示previous,代表先手必败,即后手必胜,N-position表示next,…
在算法竞赛中,博弈论题目往往是以icg.通俗的说就是两人交替操作,每步都各自合法,合法性与选手无关,只与游戏有关.往往我们需要求解在某一个游戏或几个游戏中的某个状态下,先手或后手谁会胜利的问题.就比如经典的:几堆石子,两人可以分别拿若干个,一次只能选择一个石子堆操作,问给定状态下,先手胜利还是后手胜利? 而nim与sg函数就是对于这类问题的解法,在我的理解看来,sg函数和nim分别对应不同阶段的决策:前者对于单个游戏决策,后着是将这些单个游戏综合起来的整体决策. 一.状态与转移 icg游戏往往可…
博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updated at 2019.8.14. SG函数 在学习博弈论之前,你需要彻底了解 SG 函数. 对于一个两人轮流操作的游戏,我们把游戏的每一种可能的局面设为一种局面. 那么局面只分两种:(对于这一轮操作者的)必胜态和必败态.至于为什么没有不确定态,看完下文你就明白了. 若这一轮操作者从这个局面出发,按最…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是算法与数据结构专题的第27篇文章,我们继续深入博弈论问题.今天我们要介绍博弈论当中非常重要的一个定理和函数,通过它我们可以解决许多看起来杂乱无章的博弈问题,使得我们可以轻松地解决一大类博弈问题. 有了SG函数和SG定理,我们不再是单纯地通过构思.分析和找规律去解决问题了.并且我们之前学过的巴什博奕.威佐夫博弈以及Nim博弈都可以使用SG函数来解决,相当于我们找到了这一大类问题的通解.下面,我们来看几个基本定理和基本概念. 基本…