概述:Apache Beam WordCount编程实战及源代码解读,并通过intellij IDEA和terminal两种方式调试执行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并能够执行大数据处理引擎上.完整项目Github源代码 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZHJlYW1fYW4=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/…
概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并可以运行大数据处理引擎上.完整项目Github源码 负责公司大数据处理相关架构,但是具有多样性,极大的增加了开发成本,急需统一编程处理,Apache Beam,一处编程,处处运行,故将折腾成果分享出来. 1.Apache Beam编程实战–前言,Apache B…
不多说,直接上干货! https://beam.apache.org/get-started/wordcount-example/ 来自官网的: The WordCount examples demonstrate how to set up a processing pipeline that can read text, tokenize the text lines into individual words, and perform a frequency count on each o…
不多说,直接上干货! Apache Beam中的函数式编程理念 Apache Beam的编程范式借鉴了函数式编程的概念,从工程和实现角度向命令式妥协. 编程的领域里有三大流派:函数式.命令式.逻辑式. 此处的函数不是编程语言中的函数,而是数学中的函数.现代计算的理论模型是图灵机,冯诺依曼体系是图灵机的实现,所以命令式变成本质上是冯诺依曼体系下的操作指令序列.函数式来自于lambda演算,lambda演算与图灵机是等价的,本质上函数也可以完全表达计算. C.C++.Java等都属于命令式编程,是从…
Apache Beam(原名Google DataFlow)是Google在2016年2月份贡献给Apache基金会的Apache孵化项目,被认为是继MapReduce,GFS和BigQuery等之后,Google在大数据处理领域对开源社区的又一个非常大的贡献.Apache Beam的主要目标是统一批处理和流处理的编程范式,为无限,乱序,web-scale的数据集处理提供简单灵活,功能丰富以及表达能力十分强大的SDK.Apache Beam项目重点在于数据处理的编程范式和接口定义,并不涉及具体执…
https://mp.weixin.qq.com/s?__biz=MzU1NDA4NjU2MA==&mid=2247492538&idx=2&sn=9a2bd9fe2d7fd681c10ebd368ef81c9c&chksm=fbea5a75cc9dd3636c148ebe6e296621d0c07132938a62f0b3643f34af414b3fd85e616e754b&scene=0&key=f9325dcb38245ddcc4d3ff16d58d0…
术语 Apache Beam:谷歌开源的统一批处理和流处理的编程模型和SDK. Beam: Apache Beam开源工程的简写 Beam SDK: Beam开发工具包 **Beam Java SDK: Beam Java开发工具包 Trigger: 触**发器 Event Time: 事件时间,事件发生的时刻 Process Time: 处理时间,即数据被系统处理的时刻 PCollection: Beam中的表示数据集的对象 Pipeline: Beam中表示数据处理流程的对象,包含参数.数据…
Apache Beam实战指南 | 大数据管道(pipeline)设计及实践  mp.weixin.qq.com 策划 & 审校 | Natalie作者 | 张海涛编辑 | LindaAI 前线导读: 本文是 Apache Beam 实战指南系列文章第五篇内容,将对 Beam 框架中的 pipeline 管道进行剖析,并结合应用示例介绍如何设计和应用 Beam 管道.系列文章第一篇回顾 Apache Beam 实战指南 | 基础入门.第二篇回顾 Apache Beam 实战指南 | 玩转 Kaf…
简单介绍 近期一直在看Apache OFbiz entity engine的源代码.为了能够更透彻得理解,也由于之前没有看人别人写过分析它的文章,所以决定自己来写一篇. 首先,我提出一个问题,假设你有兴趣能够想一下它的答案: JDBC真的给数据訪问提供了足够的抽象,以至于你能够在多个支持jdbc訪问的数据库之间随意切换而全然不须要操心你的数据訪问代码吗? 我以前在微博上有过关于该问题的思考:…
1.概述 在大数据的浪潮之下,技术的更新迭代十分频繁.受技术开源的影响,大数据开发者提供了十分丰富的工具.但也因为如此,增加了开发者选择合适工具的难度.在大数据处理一些问题的时候,往往使用的技术是多样化的.这完全取决于业务需求,比如进行批处理的MapReduce,实时流处理的Flink,以及SQL交互的Spark SQL等等.而把这些开源框架,工具,类库,平台整合到一起,所需要的工作量以及复杂度,可想而知.这也是大数据开发者比较头疼的问题.而今天要分享的就是整合这些资源的一个解决方案,它就是 A…