XGBoost——机器学习--周振洋】的更多相关文章

XGBoost——机器学习(理论+图解+安装方法+python代码) 目录 一.集成算法思想 二.XGBoost基本思想 三.MacOS安装XGBoost 四.用python实现XGBoost算法 在竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升.既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢? 我们先来直观的理解一下什么是XGBoost.XGBoost算法是和决策树算法联系到一起的.决策树算法在我的另一篇博客中讲过了. 一.集…
LightGBM的并行优化 上一篇文章介绍了LightGBM算法的特点,总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出.在时间和空间上都更胜一筹,准确率也比其他模型表现得更好.这些模型在处理一般规模的数据时,单机即可以解决,然而当数据规模更大时,即需要进行分布式计算,分担每台机器(worker)的压力.这篇文章介绍LightGBM的两种并行学习算法(Feature Paralle…
LightGBM算法总结 2018年08月21日 18:39:47 Ghost_Hzp 阅读数:2360 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/weixin_39807102/article/details/81912566 1 LightGBM原理 1.1 GBDT和 LightGBM对比 1.2 LightGBM 的动机 1.3 Xgboost 原理 1.4 LightGBM 优化 1.4.1 Histogram 算法 1.4.2…
ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
1.声音音频基础知识 (1)声音是由震动产生,表现为波的形式.波有频率,振幅等参数.对于声波而言:频率越大,音调越高,反之越低.振幅越大,声音越大,反之越小. (2)采样率,帧率:波是连续(无穷)的,计算机存储是离散(有限)的.要想用有限存储无限,几乎不可能.因此,要每隔一段时间对波进行一次采样.每秒采样次数采样率.长用采样率是44.1kHz(这里的1k不是1024,是1000!!!切记.). (3)采样大小,采样宽度:波每一个时刻都有一个对应的能量值,在计算机中用整数存储.通常使用16bit有…
机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标分别是什么意思. 针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但是实际中分类时,会出现四种情况. (1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP) (2)若一个实例是正类,但是被预测成为负类,即为假负类(False Negat…
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. 当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. 还有另一篇读书笔记(Link)是关于<机器学习实战>.实战经验也很重要. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classi…
周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航,  下载地址: https://u12230716.pipipan.com/fs/12230716-336803118 人工智能-李开复,     下载地址:       https://u12230716.pipipan.com/fs/12230716-336902476 吴恩达深度学习笔记,下载地址:     https://u12…
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是…
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类. 集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法 集成学习 集成学习…
转载请注明出处:http://www.cnblogs.com/willnote/p/6801496.html 前言 本文为学习boosting时整理的笔记,全文主要包括以下几个部分: 对集成学习进行了简要的说明 给出了一个Adboost的具体实例 对Adboost的原理与学习过程进行了推导 针对GBDT的学习过程进行了简要介绍 针对Xgboost的损失函数进行了简要介绍 给出了Adboost实例在代码上的简单实现 文中的内容是我在学习boosting时整理的资料与理解,如果有错误的地方请及时指出…
问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是用bagging的方法把DecisionTree组合在一起,相当于做了多次DecisionTree一样.但是xgboost/gbdt仅仅用梯度上升法就能用6个节点的深度达到很高的预测精度,使我惊讶到怀疑它是黑科技了.请问下xgboo…
基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角…
1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示.所以直观上来讲,一个流形好比是一个$d$维的空间,在一个$m$维的空间中$(m > d)$被扭曲之后的结果.需要注意的是流形并不是一个形状,而是一个空间.举个例子来说,比如说一块布,可以把它看成一个二维的平面,这是一个二维的空间,现在我们把它扭一扭(三维空间),它就变成了一个流形,当然不扭的时候,…
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
转自 http://blog.csdn.net/u014568921/article/details/49383379 另外一个很容易理解的文章 :http://www.jianshu.com/p/005a4e6ac775 更多参考如下 机器学习(四)— 从gbdt到xgboost 机器学习常见算法个人总结(面试用) xgboost入门与实战(原理篇) Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting R…
目录 引言 SVM 线性可分SVM 线性不可分SVM Hinge Loss 非线性SVM 核函数 总结 参考文献 引言 在深度神经网终(Deep Neural Network, DNN) 大热之前, 在机器学习里有个明星算法就是今天要与大家分享的 支持向量机(Support Vector Machine, SVM). 它是昔日的明星, 虽然现在没有DNN风光, 但它依然是机器学习领域内耀眼的存在, 这当然取决于其强大的学习能力. 第一次听到SVM想必大家跟我一样,这是什么东西,这个'高大上'的名…
http://www.jianshu.com/p/005a4e6ac775 综述   GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.  GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类.  GBDT的思想使其具有天…
1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost.GBDT.XGBOOST.后者的代表算法主要是随机森林. 1.2 集成学习的主要思想 集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测.核心思想就是如何训练处多个弱分类器以及如何将这些…
贡献者:飞龙 版本:v1.0 最近总是有人问我,把 ApacheCN 这些资料看完一遍要用多长时间,如果你一本书一本书看的话,的确要用很长时间.但我觉得这是非常麻烦的,因为每本书的内容大部分是重复的,有些不重复的内容你也不好找.为了方便大家,我就把每本书的章节拆开,再按照知识点合并,手动整理了这个知识树.大家可以按照知识点依次学习,如果理解了一个知识点,就没必要看其余文章,直接跳到下一个就行了. 统计机器学习 基础知识 AILearning 第1章_基础知识 CS229 中文笔记 一.引言 CS…
前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度…
眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平滑的,易于实现的学习方法,帮助 "普通" 程序员踏入AI领域这个门.这里,我对普通程序员的定义是:拥有大学本科知识:平时工作较忙:自己能获取的数据有限.因此,本文更像是一篇 "from the scratch" 的AI入门教程. 二. AI领域简介 AI,也就是人工智能…
刘海峰:国内知名微软开源技术网站51Aspx 创始人,十年以上的Asp.net从业经验,微软MSDN特约讲师.Teched讲师.ImagineCup大赛评委.人大出版社研修班特约讲师,曾多次受邀访问美国西雅图的微软总部,2009年与业内知名MVP组建易纵互联(北京)科技有限公司并任运营总监.现专注于微软Azure技术领域,在Azure平台进行功能实践和传统Web平台迁移方面有诸多实战经验.陈锐:2002-2008 Visual Basic MVP魏滔序:2009-2011微软MVP,2007 C…
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语…
基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语…
条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度的…
普通程序员如何转向AI方向   眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智能方向,是知乎上的一个问题.本文是我对此问题的一个回答的归档版.相比原回答有所内容增加. 一. 目的 本文的目的是给出一个简单的,平滑的,易于实现的学习方法,帮助 "普通" 程序员踏入AI领域这个门.这里,我对普通程序员的定义是:拥有大学本科知识:平时工作较忙:自己能获取的数据有限.因此,本文更像是一篇 "from the scratch" 的AI入门教程. 二. A…
2015年1月31日,作为KEYNOTE演讲嘉宾,我和来自全国各地的开发人员分享了作为一名MVP的一些体会. Keynote – Open Source, Free Tools and Cross Platform Keynote – Open Source, Free Tools and Cross Platform 今年是我加入微软全球最有价值专家项目的第八个年头了,回想起2007年第一次参加微软技术大会TechEd的时候,我还是一个刚入行的小兵,现在竟然可以站在大会的KEYNOTE上吹嘘一…