转 fine-tuning (微调)】的更多相关文章

resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型.我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体.然而,我们平常接触到数据集的规模通常在这两者之间. 假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户.一种可…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tutorial/interfaces.html http://www.cnblogs.com/denny402/p/5076285.html 1. 如果直接训练时,test.sh中内容如下: ./build/tools/caffe train --solver=examples/XXX/lenet_s…
(转载自:WikiPedia) Fine tuning is a process to take a network model that has already been trained for a given task, and make it perform a second similar task. Assuming the original task is similar to the new task, using a network that has already been d…
转自:http://blog.csdn.net/u010402786/article/details/70141261 前言 什么是模型的微调?   使用别人训练好的网络模型进行训练,前提是必须和别人用同一个网络,因为参数是根据网络而来的.当然最后一层是可以修改的,因为我们的数据可能并没有1000类,而只有几类.把最后一层的输出类别和层的名称改一下就可以了.用别人的参数.修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning). 微调时候网…
[转载]关于Pretrain.Fine-tuning 这两种tricks的意思其实就是字面意思,pre-train(预训练)和fine -tuning(微调) 来源:https://blog.csdn.net/yjl9122/article/details/70198885 Pre-train的model: 就是指之前被训练好的Model, 比如很大很耗时间的model, 你又不想从头training一遍.这时候可以直接download别人训练好的model, 里面保存的都是每一层的parame…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues/873 http://stackoverflow.com/questions/37459812/finetune-a-torch-model https://github.com/torch/nn/blob/master/doc/module.md https://github.com/torch…
本文将利用 TorchVision Faster R-CNN 预训练模型,于 Kaggle: 全球小麦检测 上实践迁移学习中的一种常用技术:微调(fine tuning). 本文相关的 Kaggle Notebooks 可见: TorchVision Faster R-CNN Finetuning TorchVision Faster R-CNN Inference 如果你没有 GPU ,也可于 Kaggle 上在线训练.使用介绍: Use Kaggle Notebooks 那么,我们开始吧 准…
Fine-Tuning微调原理 如何在只有60000张图片的Fashion-MNIST训练数据集中训练模型.ImageNet,这是学术界使用最广泛的大型图像数据集,它拥有1000多万幅图像和1000多个类别的对象.然而,我们经常处理的数据集的大小通常比第一个大,但比第二个小. 假设我们想在图像中识别不同种类的椅子,然后将购买链接推给用户.一种可行的方法是先找到一百张常见的椅子,每把椅子取一千张不同角度的图像,然后在采集到的图像数据集上训练分类模型.虽然这个数据集可能比时尚MNIST大,但是示例的…
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior knowledg…
[转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些Pytho…
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 1.caffe分享 1.1.caffe起源 1·2.caffe介绍 1.3.caffe其他方向 2.讨论 2.1.caffe算法与结构 2.2.caffe工程与应用 2.3.模型训练与调参 2.4.caffe与DL的学习与方向 2.5.其他 3.附录 1.caffe分享 我用的ppt基本上和我们在…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.例如:你已经训练好一个能够识别猫的系统,你利用这些知识或者这些知识的部分去完成更好的 阅读X射线扫描图. 这就是所谓的-- 迁移学习 how-to 假设你已经训练好一个图像识别神经网络,首先用一个神经网络,在(x,y)对上训练,其…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
摘要: 本文解决了半监督视频目标分割的问题.给定第一帧的mask,将目标从视频背景中分离出来.本文提出OSVOS,基于FCN框架的,可以连续依次地将在IMAGENET上学到的信息转移到通用语义信息,实现前景分割的目的,之后学习单个标注物体的外形.尽管所有的帧序列都是独立处理的,但结果却是时序相关的,连续稳定的.我们在两个标注的视频数据集上进行了测试,结果显示OSVOS是非常快的,同时较当前流行的最好算法强一大截. 介绍: CNN网络划时代的改变了计算机视觉领域.极大的提升了图像分类,目标检测的准…
引自官方:  Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A.B有相同输入.任务B比任务A有更少的数据.A任务的低级特征有助于任务B.对于迁移学习,经验规则是如果任务B的数据很小,那可能只需训练最后一层的权重.若有足够多的数据则可以重新训练网络中的所有层.如果重新训练网络中的所有参数,这个在训练初期称为预训练(pre-training),因为事先利用任务A的权重初始化.在预训练的基础上更新权重,那么这个过程叫微调(fine t…
参考来源:https://blog.csdn.net/u012762419/article/details/79561441 TextCNN结构 TextCNN的结构比较简单,输入数据首先通过一个embedding layer,得到输入语句的embedding表示,然后通过一个convolution layer,提取语句的特征,最后通过一个fully connected layer得到最终的输出,整个模型的结构如下图: embedding layer:即嵌入层,这一层的主要作用是将输入的自然语言…
1.软件简介    UnDistracted 是 macOS 系统上一款可以帮助我们集中注意力的辅助工具,让我们在 mac 电脑上工作更加集中注意力,提高工作效率,隐藏所有文件或是文件夹窗口.隐藏所有的应用图标.隐藏菜单栏以及 Dock 工具栏,只保留当前的工作窗口,只需要一键操作. 阴影窗口的不活动的应用程序(像这些应用程序:HazeOver,StayFocused) 隐藏 Dock 和菜单栏 隐藏在桌面上的图标 自动打开"请勿打扰"模式,并在信使(Skype 和 Adium,在最近…
引自:https://blog.csdn.net/huobanjishijian/article/details/76212214 原文:https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract-4.00 tesseract 4.0之后开始使用机器学习来进行字符识别,其训练模型的方法与以前的版本有所不同,现将其官网的手册翻译如下 (未完成)   一.引言 Tesseract 4.0中包含了一个新的基于神经元网络的识别引擎,…
目录 Overview : Installation and Getting Started :安装并开始 User Guide :用户指南 What is Cinemachine? : 什么是Cinemachine? Cinemachine is a suite of 'smart' procedural modules which allow you to define the shot and they'll dynamically follow your direction. Setup…
谷歌大脑科学家 Caffe缔造者 贾扬清 微信讲座完整版 一.讲座正文: 大家好!我是贾扬清237,目前在Google Brain83,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe60.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt808基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:) 网页上应该还有一些python的样例帮助大家上…
Google大脑科学家贾杨清(Caffe缔造者)-微信讲座 机器学习Caffe 贾扬清 caffe   一.讲座正文: 大家好!我是贾扬清178,目前在Google Brain69,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe48.没有太多准备,所以讲的不好的地方还请大家谅解. 我用的ppt671基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)…
一.讲座正文:大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些python的样例帮助大家上手,所以欢迎参观.ppt比较长,所以我想我主要就介绍一下背景以及high level…
1 误差分析( Carrying out error analysis ) 假设你训练了一个猫的二分类模型,在开发集上的错误率是10%,你想分析这10%的错误率来自哪里,怎么做呢? 先把这些错分的图片找出来,你注意到算法把一些狗错分成了猫,那么你可以收集更多的狗图,或者针对狗的数据来调整你的模型. 在这之前,应该先分析一下,这些错误的图片有多少是把狗错分成猫,如果说100张图片里只有5张是把狗错分成了猫,这个时候需要考虑一下值不值得花这个精力去针对狗做调整工作,它给你带来的性能提升空间太小了,最…
论文分享第三期-2019.03.29 Fully convolutional networks for semantic segmentation,CVPR 2015,FCN 一.全连接层与全局平均池化 在介绍FCN网络的全卷积连接之前,先介绍一下全连接层(fully connected layers)和全局平均池化(global average pooling) 全连接层可以将前面的多层卷积学到的“分布式特征表示”(或者说是高层的鲁棒特征)映射到样本类别空间,与softmax组合具有“分类器”…
问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路如何,能简单描述一下么答:这个有点长,可以看看google最近的一系列machine translation和image description的工作. 问:2个问题:1.目前Caffe主要面对CV或图像的任务,是否会考虑其它任务,比如NLP?2.如果想学习Caffe代码的话,能给一些建议吗?答:Caffe的…
原文:http://tomcat.apache.org/tomcat-7.0-doc/jndi-resources-howto.html Introduction(介绍) Tomcat provides a JNDI InitialContext implementation instance for each web application running under it, in a manner that is compatible with those provided by a Jav…
Apache是世界使用排名第一的Web服务器软件.它可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是最流行的Web服务器端软件之一.快速.可靠并且可通过简单的API扩充,将Perl/Python等解释器编译到服务器中. 特点: 功能强大.配置简单.速度快.应用广泛.性能稳定可靠,同时还可以做代理服务器或负载均衡 应用场景: 运行静态页面.图片(据说处理静态小文件能力不如Nginx) 结合PHP引擎运行PHP等程序,LAMP组合 结合tomcat.resin运行jsp.…
一.单层感知机(perceptron) 拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换到达输出层,在输出层得到分类结果: 缺点:无法模拟稍复杂一些的函数(例如简单的异或计算). 解决办法:多层感知机. 二.多层感知机(multilayer perceptron) 有多个隐含层的感知机. 多层感知机解决了之前无法模拟异或逻辑的缺陷,同时,更多的层数使得神经网络可以模拟显示世界中更加复杂的情形. 多层感知机给我们的启示是,神经网络的层数直接决定它的刻画能力——利用每层更少的神经元拟合更…