线性SVM与Softmax分类器】的更多相关文章

作者: 寒小阳 &&龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49949535 http://blog.csdn.net/longxinchen_ml/article/details/50001979 声明:版权所有,转载请注明出处,谢谢. 1. 线性分类器 在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的解决方法--KNN.然后我们也看到了KNN在解决这个问题…
1 引入 上一篇介绍了图像分类问题.图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像.我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想是通过将测试图像与训练集带标签的图像进行比较,来给测试图像打上分类标签.k-Nearest Neighbor分类器存在以下不足: (1)分类器必须记住所有训练数据并将其存储起来,以便于未来测试数据用于比较.这在存储空间上是低效的,数据集的大小很容易就以GB计. (2)对一个测试图像进行分类需要和所有训练…
cs231n:线性svm与softmax 参数信息: 权重 W:(D,C) 训练集 X:(N,D),标签 y:(N,1) 偏置量bias b:(C,1) N:训练样本数:  D:样本Xi 的特征维度,Xi = [ Xi1,Xi2,...,XiD]: C:类别数量 正则化系数 λ :控制正则化的强度 delta / Δ : 间隔 linear svm: 对训练样本(Xi,yi),其对应每个类别的得分为: score = W*Xi+ b 是长度为C的矢量,以s表示 score, s = [s1, s…
1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据预处理 2.1 加载数据 将原始数据集放入"data/cifar10/"文件夹下. ### 加载cifar10数据集 import os import pickle import random import numpy as np import matplotlib.pyplot as plt def load_CIFAR_batch(filename): ""&q…
1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据处理 2.1 加载数据集 将原始数据集放入"data/cifar10/"文件夹下. ### 加载cifar10数据集 import os import pickle import random import numpy as np import matplotlib.pyplot as plt def load_CIFAR_batch(filename): ""&q…
CS231n之线性分类器 斯坦福CS231n项目实战(二):线性支持向量机SVM CS231n 2016 通关 第三章-SVM与Softmax cs231n:assignment1——Q3: Implement a Softmax classifier cs231n线性分类器作业:(Assignment 1 ): 二 训练一个SVM: steps: 完成一个完全向量化的SVM损失函数 完成一个用解析法向量化求解梯度的函数 再用数值法计算梯度,验证解析法求得结果 使用验证集调优学习率与正则化强度…
一.Linear Support Vector Machine 接下来的讨论假设数据都是线性可分的. 1.1 SVM的引入:增大对测量误差的容忍度 假设有训练数据和分类曲线如下图所示: 很明显,三个分类器都能够正确分类训练数据,但是哪一个的效果更好呢?直觉告诉我们第三个,为什么呢? 这是因为第三个的那些点离分割超平面的距离较远,这样能够容忍更大的噪声, 鲁棒性更强. 1.2 间隔最大化问题的建模 我们的目标是寻找分割超平面导致间隔最大化.形象的说我们定义分割超平面两边的点与分割超平面的最短距离为…
一.SVM SVM的英文全称是Support Vector Machines,我们叫它支持向量机.支持向量机是我们用于分类的一种算法. 1 示例: 先用一个例子,来了解一下SVM 桌子上放了两种颜色的球,用一根棍分开它们,要求:尽量在放更多球之后,仍然适用. 我们可以这样放: 又在桌上放了更多的球,似乎有一个球站错了阵营.显然,我们需要对棍做出调整. SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙.这个间隙就是球到棍的距离. 现在好了,即使放了更多的球,棍仍然是一个好的分界线.…
SVM-支持向量机 SVM(Support Vector Machine)-支持向量机,是一个功能非常强大的机器学习模型,可以处理线性与非线性的分类.回归,甚至是异常检测.它也是机器学习中非常热门的算法之一,特别适用于复杂的分类问题,并且数据集为小型.或中型的数据集. 这章我们会解释SVM里的核心概念.原理以及如何使用. 线性SVM分类 我们首先介绍一下SVM里最基本的原理.这里先看一张图: 这个是Iris数据集中的部分数据,可以看到这两个类别可以由一条直线很简单地直接分开(也可以说它们是线性可…
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 SVM的问题描述 表示为正式的形式,就是: 1.3 推导点到平面的距离 因此,由于约束条件1,距离里面的绝对值可以去掉,原来的最优化问题变为: 1.4 将SVM问题写成更容易解决的形式 由于w和b乘以同样的倍数得到的平面不变.因此我们做一个放缩,规定: 因此问题就变为了: 在这里,我们发现第二个约束条件其实…