zh.wikipedia.org/wiki/Bagging算法 Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法,是机器学习领域的一种团体学习算法.最初由Leo Breiman于1994年提出.Bagging算法可与其他分类.回归算法结合,提高其准确率.稳定性的同时,通过降低结果的方差,避免过拟合的发生. 给定一个大小为的训练集,Bagging算法从中均匀.有放回地(即使用自助抽样法)选出个大小为的子集,作为新的训练集.在这个训练集上使用分类.…
Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. 而Boosting在维基中被定义为一种主要用来减少偏差(Bias)和同时也可降低方差(Variance)的机器学习元算法,是一个将弱学习器转化为强学习器的机器学习算法族.最初由Kearns 和 Valiant (1988,1989)提出的一个问题发展而来:Can a set of weak lear…
集成学习 集成学习通过构建并结合多个学习器来完成学习任务.只包含同种类型的个体学习器,这样的集成是“同质”的:包含不同类型的个体学习器,这样的集成是“异质”的.集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能. 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器间存在强依赖关系.必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表是Boosting,后者的代表是Bagging和“随机森林”. bagging…
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练一个基础分类器,最后将它们的结果综合起来获得最终输出. 1 - 特点 Bagging需要不同的/独立的(diverse/independent)基础模型,因此太过稳定的模型不适合这种集成方法,例如: KNN是稳定的 决策树是不稳定的,特别是未剪枝的决策树(因为对于每一份数据的拟合可能很不一样) 此外…
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(bagging).随机森林.提升法(boosting).堆叠法(stacking)以及许多其它的基础集成学习模型. 为了使所有这些方法之间的联系尽可能清晰,我们将尝试在一个更广阔和逻辑性更强的框架中呈现它们,希望这样会便于读者理解和记忆. 何为集成方法? 集成学习是一种机器学习范式.在集成学习中,我们会训练多…
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    htt…
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    http:…
集成~bagging~权值~组合~抽样~样例~基本~并行 一.简介 集成学习通过构建并结合多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类 个体学习器间存在强依赖关系.必须串行生成的序列化方法 个体学习器间不存在强依赖关系.可同时生成的并行化方法 前者的代表是Boosting,后者的代表是Bagging和“随机森林” 二.bagging与boosting的概念及区别 首先介绍Bootstraping,即自助法:它是一种…
转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    h…
介绍boosting算法的资源: 视频讲义.介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/ 在这个站点的资源项里列出了对于boosting算法来源介绍的几篇文章,能够下载: http://www.boosting.org/tutorials 一个博客介绍了很多视觉中经常使用算法,作者的实验和理解.这里附录的链接是关于使用opencv进行人脸检測的过程和代码,能够帮助理解训练过程是怎样完毕的: ht…