预估器 我们希望能够最大限度地使用測量结果来预计移动物体的运动. 所以,多个測量的累积能够让我们检測出不受噪声影响的部分观測轨迹. 一个关键的附加要素即此移动物体运动的模型. 有了这个模型,我们不仅能够知道该移动物体在什么位置,同一时候还能够知道我们观察支持模型的什么參数. 该任务分为两个阶段.在第一阶段,即预測阶段.用从过去得到的信息进一步修正模型以取得人或物体的下一个将对出现的位置.在第二阶段,即校正阶段,我们获得一个測量.然后与基于前一次測量的预測值(即模型)进行调整.完毕两个阶段预计任务…
Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than they. Our study of the works of the ancients enables us to give fresh life to their finer ideas, and rescue them from time’s oblivion and man’s neglect.…
Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为下一刻钟的温度等于现在的温度.但是经验是存在误差的,下一刻的真实温度可能比我们预测温度上下偏差几度,这个偏差可以认为服从高斯分布.另外我们也可以使用温度计测量温度,但温度计测量的是局部空间的温度,没办法准确的度量整间房子的平均温度.测量值和真实值得偏差也认为服从高斯分布. 现在希望由经验的预测温度和…
目标跟踪的kalman滤波器介绍 Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差.因此在运动目标跟踪中也被广泛使用.在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高.一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度.通过kalman滤波器来估计每个时刻目标状态的大致过程…
终于成功仿了一次Kalman滤波器 首先是测试了从网上down的一段代码 % KALMANF - updates a system state vector estimate based upon an% observation, using a discrete Kalman filter.%% Version 1.0, June 30, 2004%% This tutorial function was written by Michael C. Kleder% (Comments are …
382 + 原创作品转载请注明出处 + https://github.com/mengning/linuxkernel/ 一.实验环境 win10 -> VMware -> Ubuntu16.04 + GDB -> QEMU -> linux-3.9.4 + MenuOS 二.实验目的 1.了解glibc提供的系统调用函数API,int 0x80.系统调用号及参数传递过程 2.了解保现场和恢复现场的过程 3.使用库函数API和C代码中嵌入式汇编代码两种方式使用同一个系统调用 3.分…
DIY一个基于树莓派和Python的无人机视觉跟踪系统 无人机通过图传将航拍到的图像存储并实时传送回地面站差点儿已经是标配.假设想来点高级的--在无人机上直接处理拍摄的图像并实现自己主动控制要怎么实现呢?事实上视觉跟踪已经在一些高端的消费级无人机上有了应用,只是玩现成的永远没有自己动手来劲;). 前段时间DIY了一个无人机三轴云台的视觉跟踪系统,除去云台花了¥370,本文将设计思路与实验效果分享出来. 一.基本配置 1.1 硬件 计算平台:树莓派3 (¥219.00) 摄像头:USB网络摄像头(…
卡尔曼滤波的使用范围: 该系统要有如下关系: 计算步骤: PART0:INI PART1:Time update 迭代的目标:从X(K-1)+ 求得X(K) + 因此,先有X(K-1)+,已知F,G.得到X(K) -.再由K(k),y(k) 求得X(K)+. 但是K(k)需要P(K)-,P(K)-需要从(K-1)+得到.所以要算P(k)-. 为了保证迭代的继续还要计算P(K)+. 第一公式是假设:linear discrete-time system 根据<信号与系统>的描述,对于线性系统,必…
1.简单介绍(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫"卡尔曼". 跟其它著名的理论(比如傅立叶变换.泰勒级数等等)一样.卡尔曼也是一个人的名字,而跟他们不同的是.他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯. 1953,1954年于麻省理工学院分别获得电机project学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们如今要学习的卡尔曼滤波器.正是源于他的博士论文和19…
1.简介(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New…