解题:洛谷2257 YY的GCD】的更多相关文章

题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)==prime]$ $\sum_{p∈prime}f(p)$ $\sum_{p∈prime} \sum_{d=1}^{min(n,m)} [p|d] μ(\frac{d}{p})g(d)$ 套路的,改为枚举$\frac{d}{p}$ $…
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需要更加数学一点: \[\sum_{k=1}^{n}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]\ \ \ \ \ (k\in\text{素数集合})\] 按照套路我们转化为: \[\sum_{k=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{k}\r…
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a}{p}\right\rfloor, \left\lfloor\frac{b}{p}\right\rfloor)} \mu(d) \left\lfloor\frac{a}{pd}\right\rfloor\left\lfloor\frac{b}{pd}\right\rfloor\] 那么现在由于想要进…
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans=\sum_{p\in prime}\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\) 我们发现后面那一部分(\(\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\))可以套路的莫比乌斯反演: \(ans=\sum…
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行了. 现在我觉得: 推式子,还是欧拉筛,筛出个 \(\mu\) ,然后乱推 \(\gcd\) 就行了. 前置知识: 一定数学基础 ,欧拉筛. 至少了解单位函数.(最好会整除分块哦) 我们先引入 \(\mu\) 的概念. \[ \mu_n = \begin {cases} 1 , n=1 \\ (-1…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少\((x,y)\)满足\(gcd(x,y)\in \mathbb{P}\) 数据范围 \(T=10000\),\(1\leqslant N,M\leqslant 10000000\) 显然,暴力不可做. 这种公约数计数的题貌似大多都是用莫比乌斯反演做的?套路啊,套路. 首先,我们先很套路地设一个函数…
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 调和级数 欧拉函数推广到积性函数 完全积性函数 莫比乌斯函数 莫比乌斯反演 狄利克雷卷积 杜教筛 Lucas定理 回到这道题 题意: 给出n, m ∈ [1, 1e7] ,求有多少对(x, y) 满足x ∈ [1, n], y ∈ [1, m] 且 gcd(x, y) 为质数 字丑[痛心 附上代码…
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$gcd(i,j)=d$的$(i,j)$的对数,$g(d)$表示存在公因数为$d$的$(i,j)$的对数 那么就有$$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]$$ $$g(d)=\sum_{d|k}f(k)=\lfloor\frac{N}{d}\rfloor\l…
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==p] $ 由套路: \(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}…
题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没百度到qwq) \[\epsilon(x)=\begin{cases}1 & x=1\\ 0 & x\neq1\\ \end{cases}\] \[\mu(x)=\begin{cases}1 & x=1\\ 0 & 存在质数p使p^2|x\\ (-1)^k & k是x质…
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^MIsPrime(gcd(x,y))\). 莫比乌斯反演 听说此题是莫比乌斯反演入门题? 一些定义 首先,我们可以定义\(f(d)\)和\(F(d)\)如下: \[f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d]\] \[F(d)=\sum_{i=1}^N\sum_{j=1}^M[d|gcd(i,j)]\] 通过定义,不难发现: \[F(n)=\sum_{n|d}f(d)=\lfloo…
题目描述: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. 题解: 代码: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define N 10000500 #define ll long long ],cnt,mu[N]; ll f[N],F[N]; bool vis[N]; void…
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ…
前言 这道题还是比较简单的 解法 首先将题目转化为数学语言. 题目要我们求的是: \[\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=d]\] 按照套路1,我们将其同时除以d转换为 \[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}[gcd(i,j)=1]\] 按照技巧1,我们将其变换为 \[\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\s…
嗯... 题目链接:https://www.luogu.org/problemnew/show/CF798C 这道题首先要会写gcd..也类似一种找规律吧... 问题的操作是在两个数的基础上进行的: 那么我们不妨只考虑两个数的操作,手写几组数据不难发现,所有写出来的两个数A.B,都会在至多两次操作内完成任务.那么我们可以考虑其性质: 两个数A.B.无非四种情况: 奇数,奇数--------------->操作后变成       偶数,偶数 奇数,偶数--------------->操作后变成…
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000,1\leq k\leq n,m\leq 50000$ 暴力做法 $O(Tnm\log\max(n,m))$ 不用说了,那有没有什么更好的做法呢? 我们定义一种函数叫莫比乌斯函数 $\mu$,它的定义是: 当 $n=1$ 时,$\mu(n)=1$ 当 $n$ 可以分解成 $p_1p_2...p_k$…
学了莫比乌斯反演之后对初阶问题没有任何问题了,除法分块也码到飞起,但是稍微变形我就跪了.用瞪眼观察法观察别人题解观察到主要内容除了柿子变形之外,主要就是对于miu函数的操作求前缀和.进而了解miu函数,miu函数是在这个数是否有平方因子的个数,每次推的套路是先用欧拉筛筛出来所有需要的函数,然后用每次需要用到的函数进行累计迭代加到前缀和,二次过筛,然后堆起来前缀和,用除法分块就行了,这个方法屡试不爽. 两道题,一道是洛谷P2257 YY的GCD 这道题求的是1-n和1-m区间内gcd为质数的个数,…
YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教-- 多组输入 输入输出格式 输入格式: 第一行一个整数T 表述数据组数 接下来T行,每行两个正整数,表示N, M 输出格式: T行,每行一个整数表示第i组数据的结果 说明 T=10000,N, M <= 10000000 解…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6…
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#: 复制 输出样例#: 复制 说明 对于样例(,),(,),(,),(,) <=N<=^ 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. 看了好几天数论了,忍不住出来切切水题. 思路: 若已知x,y,因为gcd(x, y)为素数,令p = gc…
P3956 棋盘 题目描述 有一个\(m×m\)的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上. 下.左. 右四个方向前进.当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你不需要花费金币:如果不同,则你需要花费1个金币. 另外, 你可以花费2个金币施展魔法让下一个无色格子暂时变为你指定的颜色.但这个魔法不能连续使用, 而且这个魔法的持续时间很短,也就是说,…
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 Solution 这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强…
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:1.P,Q是正整数;2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入格式:二个正整数x0,y0 输出格式:一个数,表示求出满足条件的P,Q的个数 Solution 1.由最大公约数的定义我们得到:存在k1,k2∈R,使P=k1x0,Q…
P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶快行动!" 你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢? 输入输出格式 输入格式: 整数\(n\)(2≤n≤33),表示不同球星名字的个数. 输出格式: 输出凑齐所有的名字平均需…
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) (由a*b=gcd(a,b)*lcm(a,b)) x=(b1/b0)*gcd(x,b0) 令i=gcd(x,b0)∈[1,√b0] 分成两半求减少时间复杂度 特判相等的时候 判断x=(b1/b0)*i和x=(b1/b0)*(b0/i)是否满足条件 代码 #include<iostream> #inc…
[解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https://blog.csdn.net/Liang_Si_FFF/article/details/84570359)[题目链接](https://www.luogu.org/problemnew/show/P2571) ===========================================…
[解题报告] 洛谷 P3492 [POI2009]TAB-Arrays 这题是我随机跳题的时候跳到的.写完这道题之后,顺便看了一下题解,发现只有一篇题解,所以就在这里顺便写一个解题报告了. 首先当然是题目链接 顺便贴一下csdn的网址 题目描述 给出两个n*m的矩阵,保证每个矩阵内元素互不相同且权值均在[-10^6,10^6]之间,请能否把其中一个矩阵通过若干次交换两行或者交换两列的操作变成另外一个矩阵. 输入输出格式 输入格式 第一行是一个整数T,表示有T组数据. 每一组数据的第一行是两个整数…
[解题报告]洛谷 P1231 教辅的组成 题目链接 CSDN链接 这道题就只是一道普通的最大流问题,但是关键所在就是如何构图.要不是我看了题解,真的想不到这个构图方法呢 题目大意我就不写了,自己看好了.因为我觉得我写得可能还不如你们直接看题目的好 我疑惑的地方 我还没有做过这种有多种搭配的问题,所以我刚开始的构图思路就是: 从源点S向所有的书连一条边 从书向相关的答案和练习册连一条边 从答案和练习册向汇点T连一条边 但是,这么做显然是不对的. 正确的方法 把所有的书拆成两个点,我称之为book~…