魔板 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2170 Accepted Submission(s): 455 Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可用方块的颜…
魔板 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2921 Accepted Submission(s): 649 Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可用方块的颜…
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special Judge Description The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15…
Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13956 Accepted Submission(s): 3957 Special Judge Problem Description The 15-puzzle has been around for over 100 years; even if you don'…
做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态.例如,序列(1,2,3,4,5,6,7,8)表示魔板状态…
建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a numb…
描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q…
Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 28040 Accepted Submission(s): 7457 Special Judge Problem Description The 15-puzzle has been around for over 100 years; even if you don'…
题意 题目链接 Sol 由于阶乘的数量增长非常迅速,而\(k\)又非常小,那么显然最后的序列只有最后几位会发生改变. 前面的位置都是\(i = a[i]\).那么前面的可以直接数位dp/爆搜,后面的部分是经典问题,可以用逆康托展开计算. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #def…