GAN 生成mnist数据】的更多相关文章

参考资料 GAN原理学习笔记 生成式对抗网络GAN汇总 GAN的理解与TensorFlow的实现 TensorFlow小试牛刀(2):GAN生成手写数字 参考代码之一 #coding=utf-8 #http://blog.csdn.net/u012223913/article/details/75051516?locationNum=1&fps=1 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt…
通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_data #读取数据的一个工具文件,不影响理解 import tensorflow as tf # 获取数据 mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images X = mnist.t…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Image import PIL def get_int(b): return int(codecs.encode(b, 'hex'), 16) def extract_image(path, extract_path): with open(path, 'rb') as f: data = f.read(…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛. 笔者看来,深度学习之前都没有对数组分布进行细致考察,譬如之前我对NLP词向量就产生过很多疑虑,为啥这么长条的数据组,没看到很好地去深挖.解读词向量的分布?分布这么重要,不值得Dig Deep? 生成模型GA…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
传统方法中,如何衡量一个generator ?-- 用 generator 产生数据的 likelihood,越大越好. 但是 GAN 中的 generator 是隐式建模,所以只能从 P_G 中采样但没法根据 pdf 算 likelihood. 一个方法是把从 P_G 中采样得到的点当作是一个高斯分布的 mean,所有的 sample 都共享一样的 variance,然后就共同构成了 GMM 来估计 pdf ,然后就可以算 likelihood 了.困难是,要sample 几个点(要几个高斯)…
数据库表定义为SalesOrder,用LLBL Gen Pro生成的实体定义是SalesOrderEntity,再用Code Smith生成的数据读写接口是ISalesOrderManager,最后是生成接口实现类型SalesOrderManager. 命名规范如下: SalesOrder => SalesOrderEntity => ISalesOrderManager => SalesOrderManager 这个过程高度机械化,接口与实现类型生成完成,被框架调用即可完成数据读写.接…