首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
】的更多相关文章
Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过.... $Code$ #include<cstdio> #include<algorithm> using namespace std; ; int T,p; int phi[lim]; void init_phi() { phi[]=; ;i<=lim;i++) phi[i]…
luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\(b<\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)}(mod\ p)\) \(b\)和\(p\)可以不互质 然后这题就简单了... #include<iostream> #include<cstring> #include<…
BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四…
[luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdots}}}=2\)方程的解. 对于上面的无限次幂,我们可以把这个式子移上去,得到了\(x^{2}=2\). 因为指数的原因,所以我们可以直接得到了\(x=\sqrt{2}\). 以上的问题,启示我们对于这一些无限次幂可以转移来解决. 以上的东西可能用不到 知识2:欧拉定理和扩展欧拉定理 详细请出门左拐…
Luogu4139 上帝与集合的正确用法 拓展欧拉定理
传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓展欧拉定理:$a^b \equiv a^{b \mod \varphi (p) + \varphi (p)} \mod p$,而当$b < p$时有更强的结论$a^b \equiv a^{b \mod \varphi (p)} \mod p$.我们发现利用拓展欧拉定理可以递归下去处理$2^{2^{2…
【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] 否则 当\(b≥\varphi(p)\)时 \[a^b≡a^{b\%\varphi(p)+\varphi(p)}\pmod p \] 这道题里面\(2\)的无穷次方显然会比\(\varphi(p)\)大 所以,递归调用这个公式 因此每次\(p\)都会变成\(\varphi(p)\) 所以,\(\va…
洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去…
扩展欧拉定理【洛谷P4139】 上帝与集合的正确用法
P4139 上帝与集合的正确用法 \(2^{2^{2^{\dots}}}\bmod p\) 卡最优解倒数第一祭. 带一下扩展欧拉定理就好了. code: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; const int wx=10000017; int isprime[wx],prime[wx],phi[wx]; i…
【BZOJ3884】上帝与集合的正确用法 [欧拉定理]
上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值. Output T行,每行一个正整数,为答案对p取模后的值. Sample Input 3 2 3 6 Sample Output 0 1 4 HINT 对于100%的数据,T<=1000,p<=10^7 Solution 我们运用欧拉定理: 然…
洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容易发现,一共有两种不同的"α". 第三天, 上帝又创造了一个新的元素,称作"β"."β"被定义为"α"构成的集合.容…