GRAPH ATTENTION NETWORKS】的更多相关文章

Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可以处理 graph 结构的数据,利用 masked self-attentional layers 来解决基于 graph convolutions 以及他们的预测 的前人方法(prior methods)的不足. 对象:graph-structured data. 方法:masked self-a…
论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:2022,ICLR论文地址:download 论文代码:download 1 Abstract 在 GAT中,每个节点都为它的邻居给出自己的查询表示.然而,在本文中证明了 GAT 计算的是一种非常有限的注意类型:注意力分数在查询节点上是无条件的.本文将其定义为静态注意力,并提出了相应的动态注意力 GATv…
论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou论文来源:2021,EMNLP 论文地址:download 论文代码:download Background 传播结构为谣言的真假…
基本就是第一层concatenate,第二层不concatenate. 相关论文: Semi-Supervised Classification with Graph Convolutional Networks Geometric deep learning on graphs and manifolds using mixture model CNNs Convolutional Neural Networks on Graphs with Fast Localized Spectral F…
Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016). 作者对Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering这个工作进行了简化,使之应用于graph节点…
基本信息 论文题目:GRAPH ATTENTION NETWORKS 时间:2018 期刊:ICLR 主要动机 探讨图谱(Graph)作为输入的情况下如何用深度学习完成分类.预测等问题:通过堆叠这种层(层中的顶点会注意邻居的特征),我们可以给邻居中的顶点指定不同的权重,不需要任何一种耗时的矩阵操作(比如求逆)或依赖图结构的先验知识. CNN 结构可以有效用于解决网格状的结构数据,例如图像分类等.但是现有的许多任务的数据并不能表示为网格状的结构,而是分布在不规则的区域,如社交网络.生物网络等.这样…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https://towardsdatascience.com/emotion-recognition-using-graph-convolutional-networks-9f22f04b244e Recently, deep learning has made much progress in natural…
论文信息 论文标题:MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection论文作者:Jiaqi Zheng, Xi Zhang, Sanchuan Guo, Quan Wang, Wenyu Zang, Yongdong Zhang论文来源:2022,IJCAI论文地址:download论文代码:download Abstract 本文提出的模型 MFAN 第一次将 文本.视觉和社图谱特征 融入同一个框架…