题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1+1>=an1+1....xn1+n2>=an1+n2,输出方程解个数. 解法:首先如果对数字没有任何要求(应该是只要求是非负数)的话,答案就是C(n+m+1,m+1)原理是隔板法.但是此题有各种限制,我们想办法解决限制使得答案往无限制上面靠. 首先是解决要正整数,那么每个数字减一即可,就是m-=…
没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经被给出,并且这些模数的最大质因子幂都不是很大,那么扩展lucas就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring>…
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 LCP 长度数组 \(p\). 数据范围:\(1\le |a|,|b|\le 2\times 10^7\). 蒟蒻语 别的题解为什么代码那么长.讲解那么复杂?蒟蒻不解,写篇易懂一点的,希望没有错误理解. 注意:蒟蒻的下标是从 \(0\) 开始的. 蒟蒻解 定义 \(z(i) (i>0)\):后缀 \(…
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\binom n m$时,若$P$较小,且$n,m$非常大时,我们就可以用这个定理要降低复杂度. 但是这个定理有一些限制,比如说要求$p$是质数,遇到一些毒瘤出题人不太好应对. 当$P$不是质数时,这时就要用到一个叫做扩展lucas定理的东西. 令$P=\prod p_i^{k_i}$. 我们发现,如果对…
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenp…
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details/82897638 https://blog.csdn.net/clove_unique/article/details/54571216 感觉扩展Lucas定理和Lucas定理的复杂程度差了不止一个档次,用到了一大堆莫名其妙的函数. 另外谁能告诉我把一个很大的组合数对一个非质数取模有什么卵用 #i…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{m\%p}\% p\),其中p为质数. 这里给出证明--证明是我在luogu上看到的lance1ot大佬的证明,个人认为是写的很好的,在此还要做一下补充. 首先,对于质数p,可以保证\(C_p^i(1 <= i <= p-1) \equiv 0(mod\ p)\),这个比较显然,因为组合数一定是整…
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://www.cnblogs.com/jianglangcaijin/p/3446839.html   膜拜 #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include…
[笔记] 扩展\(Lucas\)定理 \(Lucas\)定理:\(\binom{n}{m} \equiv \binom{n/P}{m/P} \binom{n \% P}{m \% P}\pmod{P}\)\((P\ is \ prime)\) Theory 那么如果\(p\)不是一个质数怎么办? 当我们需要计算\(C_n^m\mod p\),其中\(p = p_1^{q_1}\times p_2^{q_2}\times ...\times p_k^{q_k}\),我们可以求出:\(C_n^m\e…