原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多实践中的算法会用到它,比如经典的TopK算法.小顶堆用于实现优先级队列. 堆排序是利用堆这种数据结构所设计的一种排序算法.堆实际上是一个完全二叉树结构. 问:那么什么是完全二叉树呢? 答:假设一个二叉树的深度为h,除第 h 层外,其它各层 (1-h-1) 的结点数都达到最大个数,第 h 层所有的结点…
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般能够看作是一个阶跃,既从一个灰度值在非常小的缓冲区域内急剧变化到还有一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同一时候也是图象切割所依赖的重要特征,边缘检測主要是图象的灰度变化的度量.检測和定位,自从1959提出边缘检測以来,经过五十多年的发展,已有很多中不同的边缘检測方法.依据作者的理解和实践,本文对边缘检測的原理进行了描写叙述,在此基础上着重对…
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…
Python实现的选择排序算法原理与用法实例分析 这篇文章主要介绍了Python实现的选择排序算法,简单描述了选择排序的原理,并结合实例形式分析了Python实现与应用选择排序的具体操作技巧,需要的朋友可以参考下 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟…
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是其中非常著名的算法之一.关联分析,主要是通过算法在大规模数据集中寻找频繁项集和关联规则. 频繁项集:经常出现在一起的物品或者属性的集合 关联规则:物品或者属性之间存在的内在关系(统计学上的关系) 所以,我们常见的Apriori算法中的主要包含两大模块内容,一块是寻找频繁项集的函数模块,一块是探索关联…
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个…
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示例总结,其实Python是非常好的算法入门学习时的配套高级语言,需要的朋友可以参考下 在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了…
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting算法族的一部分.Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴.Boosting方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好.通俗地说,就是"三个臭皮匠顶个…
阿里面试中有一道题是这样的: 请用JavaScript语言实现 sort 排序函数,要求:sort([5, 100, 6, 3, -12]) // 返回 [-12, 3, 5, 6, 100],如果你有多种解法,请阐述各种解法的思路及优缺点.(仅需用代码实现一种解法,其它解法用文字阐述思路即可) 那我们就来看一下各种解法的思路以及优缺点~ 简单排序 1冒泡法: 原理:对存放原始数据的数组,按从前往后的方向进行多次扫描,每次扫描称为一趟.当发现相邻两个数据的次序与要求的不同时,即将两个数据进行互换…