题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #include<cstdlib> #include<cctype> #include<algorithm> #include<cstring> #include<cmath> #define eps 1e-8 #define maxn 100 using na…
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder.com/stat?c=problem_statement&pm=13369 题解 首先分析 CF917D. 我们考虑能否将树上的边的贡献特殊表现出来. 记原树为 \(T\),我们构造一幅 \(n\) 个结点的无向完全图,并设置一个值 \(x\),对于无向边 \((u, v)\),其权值 \(w_{…
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - E(u, v))$$ 我们知道变元矩阵树定理 ---> 不知道请见此 我们自然希望要求和的事物只跟生成树的边有关 因此考虑把$\prod\limits_{E \notin Tree} (1 - E(u, v))$转化为$\prod\limits_{E} (1 - E(u, v)) * \frac{1…
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int MAXN=45; int n,m; struct wy { int x,y,z; }t[MAXN]; int w[MAXN],f[MAXN];ll ans; inline int getfather(int x){return x==f[x]?x:getfather(f[x]);} inline in…
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include…
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]); 读入肯定没什么问题(不过我在这卡了一分多钟) 然后我们要进行消元操作 所谓消元操作其实就是对于输入的矩阵 比如说 9 3 2 2 1 4 7 3 1 3 4 5 进行一番乱搞,使得第当前枚举的(比如说枚举第i行第i列)s[i][j]系数变成1. 实际上就是整行同除qwq 比如我们除完第一行第一列的之后,矩…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1778 炸弹从1出发,有\(\frac{P}{Q}\)的概率爆炸,如果不爆炸,等概率移动到连通的点.求在每个点爆炸的概率. 分析 我们构造一个\(n\)行\(n\)列的矩阵\(f\),其中\(f[i][j]\)表示从\(i\)移动到\(j\)的概率. 那么\(f^2\)中\(f^2[i][j]\)是\(f[i][k]\times{f[k][j]}\)得来的,也就是\(i\to{k}\to{j}…
[CF446D]DZY Loves Games 题意:一张n个点m条边的无向图,其中某些点是黑点,1号点一定不是黑点,n号点一定是黑点.问从1开始走,每次随机选择一个相邻的点走过去,经过恰好k个黑点到达n的概率. $n\le 500,m\le 500000,k\le 10^9$,黑点个数不超过100. 题解:一眼就知道是高斯消元和矩乘什么的.我们先预处理出f[i][j]表示从第i个黑点开始走到的下一个黑点是j的概率.这个用高斯消元容易搞定.然后上矩乘即可.但是问题在于如果这样做的话我们要做n遍高…
LINK:小C的利是 想起来把这道题的题解写了 .一个常识:利是在广东那边叫做红包. 关于行列式的题目 不过我不太会23333..口胡还是可以的. 容易想到10分的状压.不过没什么意思. 仔细观察要求的东西 在每一行中选择一个数字 选择的位置还是相应的排列不过这个是排列之和. 容易联想到行列式的那个定义式. 此时容易发现如果把每个位置上的数字变成 \(x^{a_{i,j}}\) 那么就把乘法变成了加法 也就是最后求出来的行列式是一个nk多项式. 直接利用拉格朗日插值法 那么就得到了一个\(n^4…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[i]\)的概率不动,如果动的话,等概率移动到连接的房间,求他们在每个房间相遇的概率. 分析 有点像BZOJ_1778_[Usaco2010_Hol]_Dotp_驱逐猪猡_(期望动态规划+高斯消元+矩阵)那道题. 在那道题里,转移的是炸弹,这道题里,转移的是两个人的状态. 我们把一个甲在\(i\),乙…