使用clusterprofile做聚类分析】的更多相关文章

library(clusterProfiler ) #cat test.txt gene_symbol EXOSC10ARHGEF10LVWA5B1SRRM1PTAFRCSMD2SH3GLB1GBP6ZNF326AKNAD1STRIP1GOLPH3L............... a <- read.table("test.txt",colClasses = "character")b <- a[,1]eg = bitr(b, fromType=&quo…
说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可.使用方法:kmeans(输入矩阵,分类个数k). 转载一: MATLAB提供了两种方法进行聚类分析: 1.利用 clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法: 2.分步聚类:( 1)用 pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性:( 2)用 linkage函数定义变量之间的连接:(…
library(ConsensusClusterPlus)library(factoextra)library(cluster)library(NbClust)# 读入数据data = read.table("T_405_ex.txt",header = T, row.names = 1)b = matrix(data, nrow = 1, ncol = 1)new<-as.matrix(t(data))is.matrix(new) #标准化 my_data <- na.o…
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和…
什么是聚类分析? 聚类分析属于探索性的数据分析方法.通常,我们利用聚类分析将看似无序的对象进行分组.归类,以达到更好地理解研究对象的目的.聚类结果要求组内对象相似性较高,组间对象相似性较低.在三国数据分析中,很多问题可以借助聚类分析来解决,比如三国人物身份划分.聚类分析的基本过程是怎样的?  选择聚类变量 在分析三国人物身份的时候,我们会根据一定的假设,尽可能选取对角色身份有影响的变量,这些变量一般包含与身份密切相关的统率.武力.智力.政治.魅力.特技.枪兵.戟兵.弩兵.骑兵.兵器.水军等.但是…
Annie19921223的博客 [转载]用MATLAB做聚类分析 http://blog.sina.com.cn/s/blog_9f8cf10d0101f60p.html Free Mind 漫谈 Clustering 系列 http://blog.pluskid.org/?page_id=78 Roger Jang (張智星) Data Clustering and Pattern Recognition (資料分群與樣式辨認) http://mirlab.org/jang/books/dc…
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况.以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量.名义型变量和顺序型变量的数据).本文将利用 Gower 距离.PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析. -------------------------------------------------------------------------…
将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样本. PCA主要将的是主成分-变量之间的关系,在文本中LDA也有同样的效果,将一撮词(变量)变成话题(主成分),同时通过画像主成分,可以知道人群喜欢什么样子的话题: Q型聚类代表样本之间的群落关系. LDA假设前提:主题模型中最主要的假设是词袋假设(bag of words),指通过交换文档内词的次…
Spark Java API 计算 Levenshtein 距离 在上一篇文章中,完成了Spark开发环境的搭建,最终的目标是对用户昵称信息做聚类分析,找出违规的昵称.聚类分析需要一个距离,用来衡量两个昵称之间的相似度.这里采用levenshtein距离.现在就来开始第一个小目标,用Spark JAVA API 计算字符串之间的Levenshtein距离. 1. 数据准备 样本数据如下: {"name":"Michael", "nick":&qu…
转载自:http://blog.csdn.net/qq_34784753/article/details/78825493 对于现在的最好的检测系统来说,yolo_v1 的问题主要出现在两方面,也就是: (1)yolo_v1存在大量的定位错误: (2)yolo_v1 的 召回率(recall) 比较低. ***科普时间***: 准确率(accuracy) :预测对的/所有 = (TP+TN)/(TP+FN+FP+TN) 精确率(precision):这个概念是针对预测结果而言的,表示的是预测结果…