Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in ENAS 2019-03-27 09:41:07 This blog is copied from: https://towardsdatascience.com/illustrated-efficient-neural-architecture-search-5f7387f9fb6 Designi…
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的缺陷,GPU运算时间缩短了1000倍以上.在Penn Treebank数据集上,ENAS实现了55.8的测试困惑度:在CIFAR-10数据集上,其测试误差达到了2.89%,与NASNet不相上下(2.65%的测试误差) Research Objective 作者的研究目标 设计一种快速有效且耗费资源低…
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbeat.fritz.ai/research-guide-for-neural-architecture-search-b250c5b1b2e5 From training to experimenting with different parameters, the process of design…
The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33   Paper:"The Evolved Transformer." So, David R., Chen Liang, and Quoc V. Le.  arXiv preprint arXiv:1901.11117 (2019).  Code: https://github.com/t…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
Neural Architecture Search — Limitations and Extensions 2019-09-16 07:46:09 This blog is from: https://towardsdatascience.com/neural-architecture-search-limitations-and-extensions-8141bec7681f For the past couple of years, researchers and companies h…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Paper:https://openreview.net/forum?id=HylVB3AqYm Code:https://github.com/MIT-HAN-LAB/ProxylessNAS 1. Background and Motivation:  先来看看算法的名字:ProxylessNAS,将其…
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.pdf Code (PyTorch version):https://github.com/chenxi116/PNASNet.pytorch…
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:45:44 Paper:https://arxiv.org/pdf/1901.02985 Offical TensorFlow Code: https://github.com/tensorflow/models/blob/master/research/deeplab/core/nas_networ…
本篇是基于 NAS 的图像超分辨率的文章,知名学术性自媒体 Paperweekly 在该文公布后迅速跟进,发表分析称「属于目前很火的 AutoML / Neural Architecture Search,论文基于弹性搜索(宏观+微观)在超分辨率问题上取得了非常好的结果.这种架构搜索在相当的 FLOPS 下生成了多个模型,结果完胜 ECCV 2018 明星模型 CARNM,这应该是截止至 2018 年可比 FLOPS 约束下的 SOTA(涵盖 ICCV 2017 和 CVPR 2018). 而达…
论文为Google Brain在16年推出的使用强化学习的Neural Architecture Search方法,该方法能够针对数据集搜索构建特定的网络,但需要800卡训练一个月时间.虽然论文的思路有很多改进的地方,但该论文为AutoML的经典之作,为后面很多的研究提供了思路,属于里程碑式的论文,十分值得认真研读,后面读者会持续更新AutoML的论文,有兴趣的可以持续关注   来源:晓飞的算法工程笔记 公众号 论文:Neural Architecture Search with Reinfor…
论文地址:TinyLSTMs:助听器的高效神经语音增强 音频地址:https://github.com/Bose/efficient-neural-speech-enhancement 引用格式:Fedorov I,Stamenovic M,Jensen C,et al. TinyLSTMs:Efficient neural speech enhancement for hearing aids[J]. arXiv preprint arXiv:2005.11138,2020. 摘要 现代语音增…
PNAS 2018-ECCV-Progressive Neural Architecture Search Johns Hopkins University(霍普金斯大学) && Google AI && Stanford GitHub:300+ stars Citation:504 Motivation current techniques usually fall into one of two categories: evolutionary algorithms(E…
P-DARTS 2019-ICCV-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation Tongji University && Huawei GitHub: 200+ stars Citation:49 Motivation Question: DARTS has to search the architecture in a shallow…
Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation 2019-04-30 11:46:21 Paper:https://arxiv.org/pdf/1904.12760.pdf Code:https://github.com/chenxin061/pdarts 本文是 DARTS 的改善,关于 DARTS 的细节,可以参考其原文(代码,博文). 本文…
周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine(下载链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.56…
LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前半部分接到后半部分后面,得到一个新数组,在新数组中查找给定数的下标,如果没有,返回-1.时间复杂度限制\(O(log_2n)\) C++ 我的想法是先找到数组中最大值的位置.然后以此位置将数组一分为二,然后在左右两部分分别寻找target. 二分寻找最大值的时候,因为左半部分的数一定大于nums[l],所以n…
33. Search in Rotated Sorted Array Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found . You may assume no duplicate e…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
论文地址:https://arxiv.org/abs/1611.01578 1. 论文思想 强化学习,用一个RNN学一个网络参数的序列,然后将其转换成网络,然后训练,得到一个反馈,这个反馈作用于RNN网络,用于生成新的序列. 2. 整体架构 3. RNN网络 4. 具体实现 因为每生成一个网络,都会训练一遍,Google用了800个GPU,训练了12800个网络,它采用的是分布式训练的方法. 5. 结论…
1. 摘要 最近,神经网络的架构设计都是基于计算复杂度的间接度量,比如 FLOPs.然而,直接的度量比如运行速度,其实也会依赖于内存访问和平台特性等其它因素. 因此本文建议直接在目标平台上用直接度量进行测试.基于一系列控制条件实验,作者提出了设计高效网络结构的一些实用指导思想,并据此提出了一个称之为 ShuffleNet V2 的新结构. 2. 介绍 为了衡量计算复杂度,一个广泛采用的度量方式是浮点运算的次数 FLOPs,但是,它是一个间接的度量,是对我们真正关心的直接度量比如速度或者时延的一种…
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: Integers in each row are sorted from left to right. The first integer of each row is greater than the last integer of the previous ro…
74. Search a 2D Matrix 整个二维数组是有序排列的,可以把这个想象成一个有序的一维数组,然后用二分找中间值就好了. 这个时候需要将全部的长度转换为相应的坐标,/col获得x坐标,%col获得y坐标 class Solution { public: bool searchMatrix(vector<vector<int>>& matrix, int target) { int row = matrix.size(); ) return false; ].s…
Description Given a sorted array of n integers, find the starting and ending position of a given target value. If the target is not found in the array, return [-1, -1]. Example Given [5, 7, 7, 8, 8, 10] and target value 8,return [3, 4]. Challenge O(l…
96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]*dp[2].dp[2]*dp[0]相加而成 从2开始 class Solution { public: int numTrees(int n) { vector<); dp[] = ; dp[] = ; ;i <= n;i++){ ;j < i;j++){ dp[i] += dp[j] *…
老猿做过如下测试: >>> re.search(r'\*{3,100}','*****') <re.Match object; span=(0, 5), match='*****'> >>> re.search('\*{3,100}','*****') <re.Match object; span=(0, 5), match='*****'> >>> 这二者的区别就是正则表达式前一个加了原始字符串标记r,一个未加,老猿开始理解原…
https://leetcode.com/problems/search-for-a-range/ Given a sorted array of integers, find the starting and ending position of a given target value. Your algorithm's runtime complexity must be in the order of O(log n). If the target is not found in the…
一句话思路:从左下角开始找.复杂度是o(m+n). 一刷报错: 应该是一个while循环中有几个条件判断语句,而不是每个条件判断语句里去加while,很麻烦 数组越界了.从0开始,y的最大条件应该是<n,不是<n 风格上:++ -- 都是一个数字的一元运算,不用加空格 超时了.循环体结构: while (x >= 0 && y <= n) { if (matrix[x][y] == target) { count ++; } else if (matrix[x][y…