数据集及预处理 从这个例子开始,相当比例的代码都来自于官方新版文档的示例.开始的几个还好,但随后的程序都将需要大量的算力支持.Google Colab是一个非常棒的云端实验室,提供含有TPU/GPU支持的Python执行环境(需要在Edit→Notebook Settings设置中打开).速度比不上配置优良的本地电脑,但至少超过平均的开发环境. 所以如果你的电脑运行速度不理想,建议你尝试去官方文档中,使用相应代码的对应链接进入Colab执行试一试. Colab还允许新建Python笔记,来尝试自…
目录: 冰山图片识别背景 数据介绍 数据预处理 模型搭建 结果分析 总结 一.冰山图片识别背景 这里我们要解决的任务是来自于Kaggle上的一道赛题(https://www.kaggle.com/c/statoil-iceberg-classifier-challenge),简单介绍一下赛题的背景:在加拿大的东海岸经常会有漂流的冰山,这对航行在该海域的船舶造成了很大的威胁.挪威国家石油公司(Statoil)是一家在全球运营的国际能源公司,该公司曾与C-CORE等公司合作,C-CORE基于其卫星数…
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过…
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看来,这两个圆形的特征其实是一样的,不过是移动了一个位置而已,但是因为前馈网络结构的原因,导致在做权重分配的时候,把更多的权重分配给了左上角,右下角分配的较少,所以在做最终预测,便会出现较大的误差.所以,我们需要在…
结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本是一致的. 更通俗一点说,比如在手写数字识别的案例中,图片坐标(10,10)的点.(14,14)的点.(20,20)的点,对于最终的识别结果的影响,基本是同一个维度. 再比如在影评中,第10个单词.第20个单词.第30个单词,对于最终结果的影响,也在同一个维度. 是的,这里指的是数据在维度上的不同.…
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
本文地址:https://www.cnblogs.com/tujia/p/13862351.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况.因此,数据预处理中非常重要的一项就是处理缺失值. import pandas as pd data = pd.read_csv(r"C:\work\learnbetter\micro-class\ week 3 Preprocessing\Narrativedata.csv",ind…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…
一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date(), difftime(), ISOdate(), ISOdatetime() #得到当前日期时间 (d1=Sys.Date()) #日期 年月日 (d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间 (d2=date()) #日期和时间 年月日时分秒 "Fri…