storm消费kafka实现实时计算】的更多相关文章

大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord; import o…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预…
1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.storm.Config; import org.apache.storm.…
问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费问题解决: 下面是摘自官网的一段话:How KafkaSpout stores offsets of a Kafka topic and recovers in case of failuresAs shown in the above KafkaConfig properties, you can control from where in th…
我们知道storm的作用主要是进行流式计算,对于源源不断的均匀数据流流入处理是非常有效的,而现实生活中大部分场景并不是均匀的数据流,而是时而多时而少的数据流入,这种情况下显然用批量处理是不合适的,如果使用storm做实时计算的话可能因为数据拥堵而导致服务器挂掉,应对这种情况,使用kafka作为消息队列是非常合适的选择,kafka可以将不均匀的数据转换成均匀的消息流,从而和storm比较完善的结合,这样才可以实现稳定的流式计算,那么我们接下来开发一个简单的案例来实现storm和kafka的结合 s…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
大数据也是构建各类系统的时候一种全新的思维,以及架构理念,比如Storm,Hive,Spark,ZooKeeper,HBase,Elasticsearch,等等 storm,在做热数据这块,如果要做复杂的热数据的统计和分析,亿流量,高并发的场景下,最合适的技术就是storm,没有其他 举例说明: Storm:实时缓存热点数据统计->缓存预热->缓存热点数据自动降级 Hive:Hadoop生态栈里面,做数据仓库的一个系统,高并发访问下,海量请求日志的批量统计分析,日报周报月报,接口调用情况,业务…
自己的思考: 1.接收任务到任务的分发和协调   nimbus.supervisor.zookeeper 2.高容错性                            各个组件都是无状态的,状态要自己去处理 3.消息                                 消息在流式框架的作用和可靠性处理,消息可靠处理的原理 4.事务消息                            1.finishbatch    2.commit的强顺序性   3.事务性spout分为…