多核模糊C均值聚类】的更多相关文章

摘要: 针对于单一核在处理多数据源和异构数据源方面的不足,多核方法应运而生.本文是将多核方法应用于FCM算法,并对算法做以详细介绍,进而采用MATLAB实现. 在这之前,我们已成功将核方法应用于FCM算法,在很大程度上解决了样本线性不可分的情况.但是这种单一核局限于对数据的某一特征进行有效提取,若一个样本含有多个特征,且遵循不同的核分布,单一核学习就不适用,所以说单一核在处理多数据源以及异构数据源的不足是越发明显. 针对于单一核学习不足,我们可以同时结合多个核函数对数据的多种特征进行同步描述,并…
摘要: 本文主要针对于FCM算法在很大程度上局限于处理球星星团数据的不足,引入了核方法对算法进行优化.  与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向于发现具有相近尺度和密度的球星簇.因此,FCM很大程度上局限于对球星星团的处理,不具有普遍性.联系到支持向量机中的核函数,可采用核方法将数据映射到高维特征空间进行特征提取从而进行聚类.现阶段,核方法已广泛应用于模糊聚类分析算法.核方法的应用目前已成为计算机智能方面的热点之一,对于核学习的深入研究具有…
j=1...n,N个样本 i=1...c,C聚类 一.优化函数 FCM算法的数学模型其实是一个条件极值问题: 把上面的条件极值问题转化为无条件的极值问题,这个在数学分析上经常用到的一种方法就是拉格朗日乘数法把条件极值转化为无条件极值问题, 需要引入n个拉格朗日因子,如下所示: 然后对各个变量进行求导,从而得到各个变量的极值点. 二.对聚类质心Ck进行求导 其中, 所以, 其中,所选取的距离dij对质心求解不影响. 三.对隶属度函数Uij进行求导 拉格朗日函数分为两部分,我们需要分别对其进行求导,…
FCM(fuzzy c-means) 模糊c均值聚类融合了模糊理论的精髓.相较于k-means的硬聚类,模糊c提供了更加灵活的聚类结果.因为大部分情况下,数据集中的对象不能划分成为明显分离的簇,指派一个对象到一个特定的簇有些生硬,也可能会出错.故,对每个对象和每个簇赋予一个权值,指明对象属于该簇的程度.当然,基于概率的方法也可以给出这样的权值,但是有时候我们很难确定一个合适的统计模型,因此使用具有自然地.非概率特性的模糊c均值就是一个比较好的选择. 聚类损失函数: N个样本,分为C类.C是聚类的…
转自:直觉模糊C均值聚类与图像阈值分割 - liyuefeilong的专栏 - CSDN博客 https://blog.csdn.net/liyuefeilong/article/details/43816495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 主函数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main ima = i…
FCM <- function(x, K, mybeta = 2, nstart = 1, iter_max = 100, eps = 1e-06) { ## FCM ## INPUTS ## x: input matrix n*d, n d-dim samples ## K: number of desired clusters ## Optional : ## mybeta : beta, exponent for u (defaut 2). ## nstart: how many rand…
基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids)               cluster::pam() .fpc::pamk() 层次聚类                                stats::hclust().BIRCH.CURE 密度聚类                                fpc::DBS…
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法.聚类属于无监督学习,相比于分类,聚类不依赖预定义的类和类标号的训练实例.本文首先介绍聚类的基础--距离与相异度,然后介绍一种常见的聚类算法--k均值和k中心点聚类,最…
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找…
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可): 2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离:把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离: 3 根据二维数组保存的数据,重新计算每个聚簇新的质心: 4 迭代2 和 3,直到收敛…