14.spark RDD解密】的更多相关文章

开篇:spark各种库,sparksql,sparkmachicelearning,等这么多库底层都是封装的RDD.意味着 1:RDD本身提供了通用的抽象, 2:spark现在有5个子框架,sql,Streaming,流式处理,机器学习,图计算,sparkR.可以根据具体领域的内容建模,建第6个库,第7个库.必须掌握spark的这个通用抽象基石-RDD. 1:RDD,基于工作集的分布式函数编程的应用抽象.MapReduce是基于数据集的.他们的共同特征是位置感知,容错和负载均衡是数据集和工作集都…
1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers…
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系:在spark中,RDD之间存在两种类型的依赖关系:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency 或者是 Narrow Dependency):如图1所示显示了RD…
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中.   如何创建RDD? RDD可以从普通数组创建出…
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 *********************************************** map(func) 返回一个新的分布式数据集,由每个原元素经过func函数转换后组成 ***********************************************filter(func)返回一个新的数据集,由经过func函数后返回值为true的原元素组成 ***…
https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Ma…
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh 启动spark-shell s…
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps8457 Jpsspark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/loc…
本文由cmd markdown编辑.原始链接:https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,不论什么数据在Spark中都被表示为RDD.从编程的角度来看.RDD能够简单看成是一个数组.和普通数组的差别是.RDD中的数据是分区存储的,这样不同分区的数据就能够分布在不同的机器上.同一时候能够被并行处理.因此.Spark应用程序所做的无非是把须要处理的数据转换为RDD.然后对RDD进行一系列的变换和操作从而得到…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…