在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
阅读目录 Vue 实例的生命周期 实例创建 响应的数据绑定 挂载到 DOM 节点 结论 研究 runtime 一边 Vue 一边源码 初看 Vue 是 Vue 源码是源码 再看 Vue 不是 Vue 源码不是源码 再再看 Vue 是调用栈 源码也是调用栈 -- By DOM哥 Vue 运行时这一块是非常有意思的,不像 Vue 编译器那么枯燥,这里面有大量的实用技巧和设计思想可以学习.使用过 Vue 的小伙伴应该对 Vue [响应的数据绑定](也叫双向绑定)的印象非常深刻,在修改了数据之后,视图就…
简介 前面已经讲完 spring-bean( 详见Spring ),这篇博客开始攻克 Spring 的另一个重要模块--spring-aop. spring-aop 可以实现动态代理(底层是使用 JDK 动态代理或 cglib 来生成代理类),在项目中,一般被用来实现日志.权限.事务等的统一管理. 我将通过两篇博客来详细介绍 spring-aop 的使用.源码等.这是第一篇博客,主要介绍 spring-aop 的组件.架构.使用等. 项目环境 maven:3.6.3 操作系统:win10 JDK…
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains(…
作业执行 上一章讲了RDD的转换,但是没讲作业的运行,它和Driver Program的关系是啥,和RDD的关系是啥? 官方给的例子里面,一执行collect方法就能出结果,那我们就从collect开始看吧,进入RDD,找到collect方法. def collect(): Array[T] = { val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray) Array.concat(results: _*) } 它进行了…
前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如何创建这个Driver Program的过程. 作业提交方法以及参数 我们先看一下用Spark Submit提交的方法吧,下面是从官方上面摘抄的内容. # Run on a Spark standalone cluster ./bin/spark-submit \ --class org.apach…
这一章我们探索了Spark作业的运行过程,但是没把整个过程描绘出来,好,跟着我走吧,let you know! 我们先回顾一下这个图,Driver Program是我们写的那个程序,它的核心是SparkContext,回想一下,从api的使用角度,RDD都必须通过它来获得. 下面讲一讲它所不为认知的一面,它和其它组件是如何交互的. Driver向Master注册Application过程 SparkContext实例化之后,在内部实例化两个很重要的类,DAGScheduler和TaskSched…
这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this.type = { // StorageLevel不能随意更改 if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) { throw new UnsupportedOperationException("C…
1.什么是RDD? 上一章讲了Spark提交作业的过程,这一章我们要讲RDD.简单的讲,RDD就是Spark的input,知道input是啥吧,就是输入的数据. RDD的全名是Resilient Distributed Dataset,意思是容错的分布式数据集,每一个RDD都会有5个特征: 1.有一个分片列表.就是能被切分,和hadoop一样的,能够切分的数据才能并行计算. 2.有一个函数计算每一个分片,这里指的是下面会提到的compute函数. 3.对其他的RDD的依赖列表,依赖还具体分为宽依…
一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中要向使用用户提供AOP功能,让他们可以通过AOP技术实现对类方法进行功能增强. 从"Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强"这句话我们能得到下面的这些信息: 二.AOP概念学习 我们先来看一下下面的这张图 说明:…