数据分析之Pandas操作】的更多相关文章

从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设s为pandas.core.series.Series的一个实例化对象,设df为pandas.core.frame.DataFrame的一个实例化对象 1. Pandas简介 Pandas是基于NumPy的python数据分析库,最初被作为金融数据分析工具而开发出来,因此Pandas为时间序列分析提…
Pandas pandas需要导入 import pandas as pd from pandas import Series,DataFrame import numpy as np 1 Series Series是一种类似与一维数组的对象,由下面两个部分组成: values:一组数据(ndarray类型) index:相关的数据索引标签 Series的创建:默认索引为0到N-1的整数型索引 由列表创建 由numpy数组创建 #使用列表创建Series Series(data=[1,2,3])…
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. 人口分析案例 2. 2012美国大选献金项目数据分析 1. 人口分析案例 需求: 导入文件,查看原始数据 将人口数据和各州简称数据进行合并 将合并的数据中重复的abbreviation列进行删除 查看存在缺失数据的列 找到有哪些state/region使得state的值为NaN,进行去重操作 为找到…
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表格数据 6. 数据的分类处理 / 分组 7. 高级数据聚合 8. 数据加载 9. 透视表 10. 交叉表 1. 替换操作 替换操作可以同步作用于Series和DataFrame中 创建df表格数据: import numpy as np import pandas as pd from pandas…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
本篇重点讲解windows系统下 Python3.5中第三方excel操作库-openpyxl: 其实Python第三方库有很多可以操作Excel,如:xlrd,xlwt,xlwings甚至注明的数据分析模块Pandas也提供pandas.read_excel.pandas.DataFrame.to_excel功能. 那么openpyxl的库有哪些优缺点呢: 优势: 1.openpyxl提供对pandas的dataframe对象完美支持: 2.openpyxl支持后台静默打开excel文件: 3…
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Python第三方库 所属专栏: python第三方库 pandas是什么? 是它吗?....很显然pandas没有这个家伙那么可爱....我们来看看pandas的官网是怎么来定义自己的:pandas is an open source, easy-to-use data structures and d…
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并填写缺失的数据 在数据的独立组中应用操作 重塑数据成不同格式 合并多个数据集 先进的时序功能 通过 matplotlib 和 seaborn 进行可视化操作 尽管 Pandas 功能强大,但它并不为整个数据科学流程提供完整功能.Pandas 通常是被用在数据采集和存储以及数据建模和预测中间的工具,作…
数据分析02 /pandas基础 目录 数据分析02 /pandas基础 1. pandas简介 2. Series 3. DataFrame 4. 总结: 1. pandas简介 numpy能够帮助我们处理的是数值型的数据,当然在数据分析中除了数值型的数据还有好多其他类型的数据(字符串,时间序列),那么pandas就可以帮我们很好的处理除了数值型的其他数据! pandas中的两个常用的类:Series/DataFrame 2. Series 定义: Series是一种类似一维数组的对象,由下面…