拉格朗日插值优化DP】的更多相关文章

拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F(k) = \sum_{i=1}^{m} y_i \prod_{i \neq j} \frac{k-x_j}{x_i - x_j} \] 所以,如果我们知道要求的东西是一个次数比较友好的多项式且容易求出一些点值,那么就可以把答案插出来. 来看两道例题 CF995F Cowmpany Cowmpens…
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\). 贡献不妨写成:\(\sum_{i=1}^ni^{m+1}-\sum_{i=1}^mA_i^{m+1}\).注意此时的\(A_i\)是剩下的空格(具体看代码最底下的暴力部分吧). 所以问题在于求\(\sum_{i=1}^ni^{m+1}\).自然数幂和有很多种求法. 这里写插值做法: \(\su…
题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- 大概是这样,设\(g(n,j)\)表示\(1\)到\(n\)之间的所有满足\(i\)是质数或者\(i\)的最小质因子大于\(p_j\)的所有\(f(i)\)之和,我们根据递归地来求解\(g\),设一个阈值\(L=\sqrt{n}\),当\(n\leq L\)的时候,用主席树优化,能做到每一次查询只…
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\times C_k^{k-j}\times C_{n-1-k}^{R_i-1-(k-j)}\times g[i]\] 就是先从\(k\)人中选出\(k-j\)在\(i\)这门课比B神得分高,然后再从剩下\(n-1-k\)个人中选\(R_i-1-(k-j)\)个…
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不容易看出 f(n,k)是关于k的2n+1次多项式. 证明可以用数学归纳法证明 且还可以从非常规律的转移中看出这应该是一个形似多项式的东西. 可以直接O(n)拉格朗日插值 不过这里懒得写因为 外面dp是\(n^2\)求点值的所以这里没必要O(n). 注意初始化. const ll MAXN=1010;…
题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1,\ldots,a_n\)互不相等. ​ 一个序列的值定义为它里面所有数的乘积,即\(a_1\times a_2\times\cdots\times a_n\). 求所有不同合法序列的值的和. ​ 两个序列不同当且仅当他们任意一位不一样. ​ 输出答案对一个数\(p\)取余的结果. \(n\leq50…
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数,当前选的是\(j\)的价值和.复杂度是\(O(nA)\)的.然后忘掉这个做法吧这个做法没前途. 上面这个做法最后还要\(O(A)\)求一遍和,感觉不够优美. 直接令\(f_{i,j}\)表示选了\(i\)个数,选的最大的数\(\leq j\)的价值和.转移为:\(f_{i,j}=f_{i,j-1}+…
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一位同学的一门必修课分数不同时视为两种情况不同.n,m<=100,Ui<=10^9. [算法]计数DP+排列组合+拉格朗日插值 [题解]把分数作为状态不现实,只能逐门课考虑. 设$f[i][j]$表示前i门课,有j个同学被碾压的情况数,则有: $$f[i][j]=g(i)\cdot\sum_{k=j…
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][j]=sum f[i-1][k]*C(k,j)*C(n-1-k,R[i]-j)  (k>=j) 怎么解释呢,首先前i-1科有k个人已经被碾压,k肯定大于等于j,然后考虑当前这一科有j个人被碾压,那么就需要从k个人中选出j个来即C(k,j),然后从剩下的有R[i]-j个人比B考的少,这些人必须是之前i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/lvzelong2014/article/details/79159346 https://blog.csdn.net/qq_35649707/article/details/78018944 还只会最简单的…