逻辑回归: 本章内容主要讲述简单的逻辑回归:这个可以归纳为二分类的问题. 逻辑,非假即真.两种可能,我们可以联想一下在继电器控制的电信号(0 or 1) 举个栗子:比如说你花了好几个星期复习的考试(通过 or 失败) 哇,那个女孩子长得真好看,你同不同意? 一场NBA,湖人赢了火箭还是输给火箭? 这里:我们引入sigmoid函数,可以设定一个阈值来区分两类. 这样我们可以设定一个阈值:0.5.   超过0.5的值归为1这一类,其余的(>0)都归为零这一类 这里的代码跟上一篇博客的很像,如果你不熟…
1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: (1)age: 年龄(以年表示) (2)workclass: 工作类别/性质 (e.g., 国家机关工作人员.当地政府工作人员.无收入人员等) (3)education: 受教育水平 (e.g., 小学.初中.高中.本科.硕士.博士等) (4)maritalstatus: 婚姻状态(e.g., 未婚…
分类任务 原始方法:通过将线性回归的输出映射到0-1,设定阈值来实现分类任务 改进方法:原始方法的效果在实际应用中表现不好,因为分类任务通常不是线性函数,因此提出了逻辑回归 逻辑回归 假设表示--引入sigmoid函数g sigmoid函数将输出映射到区间(0,1),可以看作是概率 损失函数 多分类 训练多个逻辑回归二分类器,对新的样本取预测概率最高的一个类别 欠拟合与过拟合 欠拟合:高偏差,模型没有很好地捕捉到数据的结构,通常是因为模型太简单,使用特征太少 过拟合:高方差,可以很好地拟合可用数…
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradient Descent) 梯度下降法是一种用来寻找函数最小值的算法.算法的思想非常简单:每次沿与当前梯度方向相反的方向走一小步,并不断重复这一过程.举例如下: [例]使用梯度下降法,求z=0.3x2+0.4y2+2的最小值. 第一步:求解迭代格式.根据“每次沿与当前梯度方向相反的方向走一小步”的思想,可知x(k…
代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd.read_csv,否则发现第一行名有错误,所以用原始的方法去处理 2. 记着拆分train和test,是有必要的. 3. 数据类型转换,第一次是numpy array的转换,从str转到float,第二次是pytorch数据初始化时,注意:预测问题的y是用的二维数据,float类型. 但是分类问题,…
1.Logistic Regression是一个二元分类问题 (1)已知输入的特征向量x可能是一张图,你希望把它识别出来,这是不是猫图,你需要一个算法,可以给出预测值,更正式的y是一个概率,当输入特征x满足条件的时候y就是1.换句话说,如果x是图片,那就需要拿到一张猫图的概率. (2)Sigmoid函数.这里就不多说了,关于sigmoid自己百度,很简单 (3)为了训练logistic回归模型的参数w和b,需要定义一个代价函数,接下来看看用logistic regression来训练的代价函数…
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用…
1 二分类( Binary Classification ) 逻辑回归是一个二分类算法.下面是一个二分类的例子,输入一张图片,判断是不是猫. 输入x是64*64*3的像素矩阵,n或者nx代表特征x的数量,y代表标签0/1,m代表训练集的样本总数. 本门课中:X代表所有的输入x,x按列排列,每个x是一个列向量,X的shape是( n, m ). 同理Y也按列排序,shape为( 1, m ). 2 逻辑回归( Logistic Regression ) 给定一个输入x ( 比如图像),你想得到一个…
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,“逻辑”是Logistic的音译,和真正的逻辑没有任何关系. 模型 线性模型 由于逻辑回归是一种分类方法,所以我们仍然以最简的二分类为例.与感知机不同,对于逻辑回归的分类结果,y ∈ {0, 1},我们需要找到最佳的hθ(x)拟合数据. 这里容易联想到线性回归.线性回归也可以用于分类,但是很多时候,尤其是二分类的时候,线性回归并不能很好地工作,因为分类不是连续的函数,其结果只能是固定的离散值.设想一下有线性回…