针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker容器部署 Install pip install fastapi pip install "uvicorn[standard]" example from typing import Optional from fastapi import FastAPI #创建FastAPI实例 app…
Docker & k8s 系列一:快速上手docker 本篇文章将会讲解:docker是什么?docker的安装,创建一个docker镜像,运行我们创建的docker镜像,发布自己的docker镜像至中央仓库. Docker是什么 docker是什么?我们在谷歌翻译中输入单词docker得到的解释是:码头工人,搬运工人.码头是什么样?我们没去过,但也在电视上见过,那里有一个个蓝色的.形状大小都相同的集装箱.它们从轮船卸载到码头,也从码头装载到巨轮上然后运往远方.每一艘轮船不需要关系集装箱里边是什…
虽然该方法不会用在实际开发中,但该过程对于初学者还是非常友好的,真应了麻雀虽小,五脏俱全这句话了.好了不多废话了,直接开始!! 1.建立一个名为test的Asp.net core web应用程序 这一部分的目的是建立项目,并使用MVC框架. 2.导入依赖项(sqlite数据库 与 EF core) 这一部分的操作目的是可以让我们的项目可以使用操作数据库的一些功能. Microsoft.EntityFrameworkCore.Sqlite Microsoft.EntityFrameworkCore…
一.概述   对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式.   PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言.如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格…
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环境比如Java,为了上一个机器学习模型去大动干戈修改环境配置很不划算,此时我们就可以考虑用预测模型标记语言(Predictive Model Markup Language,以下简称PMML)来实现跨平台的机器学习模型部署了. 1. PMML概述 PMML是数据挖掘的一种通用的规范,它用统一的XML…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这…
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热.Google也在今年推出了 TensorFlow Serving 又加了一把火. TensorFlow Serving 是一个用于机器学习模型 serving…
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. 先决条件 本文假设您对Docker有一定的了解.构建和部署示例应用程序还需要以下软件/依赖项.重要的是要注意应用程序是在Ubuntu 16.04 PC上构建的,但所有软件都是跨平台的,应该适用于任何环境. Docker Azure CLI .NET Core 2.0 Docker Hub Accou…
产品环境模型部署,创建简单Web APP,用户上传图像,运行Inception模型,实现图像自动分类. 搭建TensorFlow服务开发环境.安装Docker,https://docs.docker.com/engine/installation/ .用配置文件在本地创建Docker镜像,docker build --pull -t $USER/tensorflow-serving-devel https://raw.githubusercontent.com/tensorflow/servin…
机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述,有关Kubernetes的优点读者可自行Google.笔者整理的Kubernetes入门系列重点是如何实操,前三节介绍了Kubernets的安装.Dashboard的安装,以及如何在Kubernetes中部署一个无状态的应用,本节将讨论如何在Kubernetes中部署一个可对外服务的Tensorfl…