MCMC(一)蒙特卡罗方法】的更多相关文章

MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链(待填坑) MCMC(三)M-H采样和Gibbs采样(待填坑) 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础.比如我们前面讲到的分解机(Factorization Machines)推荐算法,还有前面讲到的受限玻尔兹曼机(RBM)原理总结,都用到了MCMC来做一些复杂运算的近似求解.下面我们就对MC…
前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起了自己的博客园密码(雾),来更个博客吧. [Warning] 本人数学水平差劲,下文用词不严谨.缺少部分证明,请酌情阅读.若出锅,欢迎指正. 啥是马尔科夫链? 马尔科夫链(Markov Chain),简单来说就是一个用来随机游走的有向图,每条边(u, v)的边权\(p_{uv}\)代表"当前在u,下…
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法. 一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的.而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少…
如果不考虑作图,这里的两个例子可以改写成下面的样子: 求圆周率 import random ''' 蒙特卡罗模拟 投点法计算圆周率 ''' # 投点游戏 def play_game(): # 圆 r = 1.0 # 半径 a, b = (0., 0.) # 圆心 # 正方形区域边界 x_min, x_max = a-r, a+r y_min, y_max = b-r, b+r # 在 正方形 区域内随机投点 x = random.uniform(x_min, x_max) # 均匀分布 y =…
蒙特卡罗(Monte Carlo)方法的精髓:用统计结果去计算频率,从而得到真实值的近似值. 一.求圆周率的近似值,采用 投点法 import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle # 投点次数 n = 10000 # 圆的信息 r = 1.0 # 半径 a, b = (0., 0.) # 圆心 # 正方形区域边界 x_min, x_max = a-r, a+r y_mi…
蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益.不过两者的区别也是显而易见,Bandit问题比较简单,状态1->动作1->状态1,这个状态转移过程始终是自我更新的过程,而且是一一对应的关系.蒙特卡罗方法所解决的问题就要复杂一些,通常来说,其状态转移过程可能为,状态1->动作1->状态2->动作1->状态3.Sutten书…
1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板(如图), 现在随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率.并以此概率,布丰提出的一种计算圆周率的方法——随机投针法.这就是蒲丰投针问题(又译“布丰投针问题”). 我们来看一下投针算法的步骤: 取一张白纸,在上面画上许多条间距为a的平行线 取一根长度为l(l≤a) 的针,随机地向…
“肥皂泡”问题来源于Reinforcement Learning: An Introduction(2017). Exercise 5.2,大致的描述如下: 用一个铁丝首尾相连组成闭合曲线,浸入肥皂泡液,拿起后,可以发现肥皂泡液以这个闭合曲线为边界形成了一个曲面.如何将这个曲面描述出来,便是肥皂泡问题的核心. 若想使得肥皂泡液形成一个稳固的曲面,肥皂泡上的每一个点所受到的合力均为0,所以这意味着该点所处的位置是周边所有点位置的均值(在这里忽略重力的影响,肥皂泡的密度量级与空气相当).所以在计算曲…
import scala.math.random object LocalPi { def main(args: Array[String]) { var count = 0 for (i <- 1 to 100000000) { val x = random * 2 - 1 val y = random * 2 - 1 if (x*x + y*y <= 1) count += 1 } println(s"Pi is roughly ${4 * count / 100000000.0…
#CalPi.py from random import random from math import sqrt from time import clock DARTS = 10000000 hits = 0.0 clock() for i in range(1, DARTS+1): x, y = random(), random() dist = sqrt(x ** 2 + y ** 2) if dist <= 1.0: hits = hits + 1 pi = 4.0 * (hits/D…