上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数据,取最近的K个数据,遵循少数服从多数的原则,从而获得目标数据的分类. 简单的说,就是[近朱者赤,近墨者者黑],下面我们一起通过KNN算法来演示这句名言的内涵. 案例背景: 我的一个表弟,自幼聪明过人,读书的时候称得上名列前茅,父母以此为骄傲.但是好景不长,自从参加工作后,结识了几个狐朋狗友,从此进…
理论学习: 3. 算法详述        3.1 步骤:      为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已知实例      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别        3.2 细节:      关于K      关于距离的衡量方法:          3.2.1 Euclidean Distance(欧式距离) 定…
综述 Cover和Hart在1968年提出了最初的近邻算法 是分类(classification)算法 输入基于实例的学习(instance-based learning),惰性学习(lazy learning) 例子(example) movie name fight times kiss times movie type California Man 3 104 Romance Beautiful Woman 1 81 Romance Kevin Longblase 101 10 Actio…
这个算法就比较简单易懂了 就是把每个向量的特征值抽象成坐标,寻找最近的k个点,来进行划分 代码如下 #include <iostream> #include <cstdio> #include <vector> #include <algorithm> #include <map> using namespace std; typedef vector<double> Vd; ; Vd V[maxn], Vt; struct Date…
例子: 求未知电影属于什么类型: 算法介绍: 步骤:  为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已知实例      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别 细节: 关于K的选择 关于距离的衡量方法: 其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)  …
K近邻很简单. 简而言之,对于未知类的样本,按照某种计算距离找出它在训练集中的k个最近邻,如果k个近邻中多数样本属于哪个类别,就将它判决为那一个类别. 由于采用k投票机制,所以能够减小噪声的影响. 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合. 一个不足之处是计算量较大,因为对每一个待分类的样本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点.…
KNN算法总结 KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别.(监督) k近邻算法(knn)是一种基本的分类与回归的算法,k-means是一种基本的聚类方法. 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为: 1)计算测试数据与各个训练数据之间的距离: 2)按照距离的…
作者:知乎用户链接:https://www.zhihu.com/question/29187952/answer/48519630 我居然今天才看到这个问题,天……本专业,有幸听过他们这个实验的组会来解(che)答(dan)一下. 之前在陆朝阳组内开组会的时候师兄正好在做这个,我本科是这个专业的,之前看到他们paper发了,还有新闻,还和室友吐槽了一番.不过实验本身还好吧,中科大在这方面确实是世界领先的,所以结合一些其他学科做出些实验还是很有看点的,比如之前就有过用量子计算和生物学结合的实验,不…
形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更新规则为: 能够发现,则个规则形式上和LMS更新规则是一样的.然而,他们的分界函数hθ(x)却全然不同样了(逻辑回归中h(x)是非线性函数).关于这部分内容在GLM部分解释. 注意:若h(x)不是sigmoid函数而是阈值函数: 这个算法称为感知学习算法.尽管得到更新准则尽管类似.但与逻辑回归全然不…
接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html 回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特征集X_train和Y_train传给机器学习算法,然后拟合(fit)出一个模型,然后输入样例到该模型进行预测(predict)输出结果. 而对于kNN来说,算法的模型其实就是自身的训练数据集,所以可以说kNN是一个不需要训练过程的算法. k近邻算法是非常特殊的,可以被认为是没有模型的算法 为了和其…