二分求幂,快速求解a的b次幂】的更多相关文章

一个引子 如何求得a的b次幂呢,那还不简单,一个for循环就可以实现! void main(void) { int a, b; ; cin >> a >> b; ; i <= b; i++) { ans *= a; } cout << ans; } 那么如何快速的求得a的b次幂呢?上面的代码还可以优化吗? 当然是ok的!下面就介绍一种方法-二分求幂. 二分求幂 所谓二分求幂,即是将b次幂用二进制表示,当二进制位k位为1时,需要累乘a的2^k次方. 下面优化一下上面…
题意:求A的B次方的后三位数字 思路1:常规求幂,直接取余求解 代码: #include<iostream> #include<cstdio> using namespace std; int main(){ int a,b; int ans; while(~scanf("%d%d",&a,&b)){ &&b==) break; a=a%;//底数取余 ans=; while(b--){ ans=(ans*a)%;//结果取余 }…
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 输入: 每组测试数据包括一行,x(0<…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
题意:给一个递推式S(n) = a1*S(n-1)+...+aR*S(n-R),要求S(k)+S(2k)+...+S(nk)的值. 分析:看到n的大小和递推式,容易想到矩阵快速幂.但是如何转化呢? 首先看到 我们用A表示上面的递推式中的R*R的那个矩阵,那么对于前面那个向量,每次乘上A^k之后都会变成(S(n + k)...)那么对于初始的向量( S(R) S(R - 1) ... S(1) ) 如果这个向量当中包括 S(k) 我们可以直接对于每次要算的 S( i * k) 求和也就是说这个向量…
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019雅礼集训][第一类斯特林数][NTT&多项式]permutation 感觉这个东西非常的...巧妙. 暴力 第一类斯特林树S(n,k)就是将n个数字划分为k个不相区分的圆排列的方案数(即忽略顺序). 首先,第一类斯特林数有一个人尽皆知的\(O(n^2)\)递推式: \[S(n,k)=S(n-1,k-…
链接:https://ac.nowcoder.com/acm/contest/392/B来源:牛客网 华华教月月做数学 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld 题目描述 找到了心仪的小姐姐月月后,华华很高兴的和她聊着天.然而月月的作业很多,不能继续陪华华聊天了.华华为了尽快和月月继续聊天,就提出帮她做一部分作业. 月月的其中一项作业是:给定正整数A.B.P,求ABmodPABmodP的值.华华…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3087    Accepted Submission(s): 953 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p=(   (a%p)^b  )%p; 5. (  (a+b)%p+c  )%p=( a+(b+c)%p  )%p; 6.( a*(b*c)%p )%p =( c*(a*b)%p )%p; 7.( (a+b)%p*c )%p= ( (a*c)%p + (b*c)%p )%p; 几条重要性质: 1.a≡…
解题的思路很巧,为了让每个数之间都留出对应的上升空间,使a[i]=a[i]-i,然后再求LIS 另外二分求LIS是比较快的 #include<bits/stdc++.h> #define maxn 1000005 #define ll long long using namespace std; int len,n,a[maxn],lis[maxn]; int main(){ int t; scanf("%d",&t); ;tt<=t;tt++){ scanf…