PHP 相关性系数计算】的更多相关文章

相关系数公式 参考:https://baike.baidu.com/item/相关系数 PHP 实现代码 public static function calc($list) { $cv = []; $X = []; $Y = []; foreach ($list as $r) { if (count($r) != 2) { continue; } $X[] = floatval($r[0]); $Y[] = floatval($r[1]); } $xavg = array_sum($X)/co…
参考文献: 1.python 皮尔森相关系数 https://www.cnblogs.com/lxnz/p/7098954.html 2.统计学之三大相关性系数(pearson.spearman.kendall) http://blog.sina.com.cn/s/blog_69e75efd0102wmd2.html 皮尔森系数 重点关注第一个等号后面的公式,最后面的是推导计算,暂时不用管它们.看到没有,两个变量(X, Y)的皮尔森相关性系数(ρX,Y)等于它们之间的协方差cov(X,Y)除以它…
目录 person correlation coefficient(皮尔森相关性系数-r) spearman correlation coefficient(斯皮尔曼相关性系数-p) kendall correlation coefficient(肯德尔相关性系数-k) R语言计算correlation 在文献以及各种报告中,我们可以看到描述数据之间的相关性:pearson correlation,spearman correlation,kendall correlation.它们分别是什么呢…
相关性系数 https://baike.baidu.com/item/相关系数/3109424?fr=aladdin 缺点 需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象.因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1:当n较大时,相关系数的绝对值容易偏小.特别是当n=2时,相关系数的绝对值总为1.因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的.     D(X+Y)=D(X)…
夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n)的夹角余弦        类似的,对于两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度. 即:       …
kappa系数在遥感分类图像的精度评估方面有重要的应用,因此学会计算kappa系数是必要的 实例1 实例2…
B-spline Curves: Computing the Coefficients 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:http://blog.csdn.net/tuqu/article/details/4749586) 原来的博主翻译还是很好的,所以前几章节直接借鉴参考原博主的内容. 尽管de Boor算法是一个计算对应于给定u的B-样条曲线上的点的标准方法, 我们许多情况下(例如,曲…
目录 1. 矩阵相关性计算方法 base::cor/cor.test psych::corr.test Hmisc::rcorr 其他工具 2. 相关性矩阵转化为两两相关 3. 可视化 corrplot gplots::heatmap.2 pheatmap 1. 矩阵相关性计算方法 base::cor/cor.test R基础函数cor或cor.test都可计算相关性系数,但cor可直接计算矩阵的相关性,而cor.test不可. 两者计算非矩阵时,cor仅得到相关系数,而cor.test还能得到…
一.多shard场景下relevance score不准确问题     1.问题描述:            多个shard下,如果每个shard包含指定搜索条件的document数量不均匀的情况下,会导致在某个shard上document数量少的时候,计算该指定搜索条件的document的相关性评分要虚高.导致该document比实际真正想要返回的document的评分要高.     2.解决         (1)生产环境下,数据量大,尽可能实现均匀分配 数据量很大的话,其实一般情况下,在概…
#-*- coding: utf-8 -*- #餐饮销量数据相关性分析 计算相关系数 from __future__ import print_function import pandas as pd catering_sale = '../data/catering_sale_all.xls' #餐饮数据,含有其他属性 data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列 print("相关系数矩阵,即…
一.多shard场景下relevance score不准确问题 1.问题描述: 多个shard下,如果每个shard包含指定搜索条件的document数量不均匀的情况下,会导致在某个shard上document数量少的时候,计算该指定搜索条件的document的相关性评分要虚高.导致该document比实际真正想要返回的document的评分要高. 2.解决 (1)生产环境下,数据量大,尽可能实现均匀分配 数据量很大的话,其实一般情况下,在概率学的背景下,es都是在多个shard中均匀路由数据的…
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7091315.html 前言 最近打算把翻译质量的人工评测好好的做一做. 首先废话几句,介绍下我这边翻译质量的人工评测怎么做.先找一批句子,然后使用不同的引擎对其进行翻译,然后将原文和译文用下面的方式进行呈现,把这些交给专业的人士去进行打分,打完分之后,对结果进行统计,得出评测结果. 看似流程很顺利,且结果也有参考价值.然而实际操作的过程中发现如果一个用户的…
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7091315.html 前言 最近打算把翻译质量的人工评测好好的做一做. 首先废话几句,介绍下我这边翻译质量的人工评测怎么做.先找一批句子,然后使用不同的引擎对其进行翻译,然后将原文和译文用下面的方式进行呈现,把这些交给专业的人士去进行打分,打完分之后,对结果进行统计,得出评测结果. 看似流程很顺利,且结果也有参考价值.然而实际操作的过程中发现如果一个用户的…
对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r>1时,正相关,一个变量增加或减少时,另一个变量也相应增加或减少 当值r=1时,无相关,说明两个变量相互独立,有一个变量值无法预测另一个变量值 当值r<1时,负相关,一个变量增加或减少时,另一个变量也相应减少或增加 相关系数取值范围限于: -1 <= r <= +1 好严格的对称性 如…
计算两个数字向量u和v之间的距离函数 1,欧氏距离(Euclidean distance) 在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间"普通"(即直线)距离.使用这个距离,欧氏空间成为度量空间.计算公式为 二维空间中的欧氏距离: 三维空间中的欧式距离: n维空间中的欧式距离: x = [1, 0, 0] y = [0, 1, 0] dis = distance.euclidean(x, y) 2,曼哈顿距离(Manhattan/cityblock distance) 曼…
最近几天学习高等代数老师说要写个程序算行列式的结果,闲来无事就简单写了一下. 不多说了,上代码 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Nrow_culmn { class Program { //计算行列式 计算复杂度为O(n的3次方) ; static void Main(string[] args) { //double[,] row_cu…
内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算工具,如一些统计函数.窗口函数.聚合等计算工具. index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"]…
先解释下什么叫数据的相关性: 计算两个数组的平均值,如果两个数组中的两个值都大于平均值或者都小于平均值,则得到true. 如果一个大于平均值一个小于平均值,则得到false.最后计算true和false的个数. 比如,两个数组[1, 2, 3, 4] and [4, 5, 6, 7] , 得到 (4, 0). 因为 1 和 4 都低于他们所在数组的平均值, 2 和 5 也都低于他们所在数组的平均值, 3 和 6 都高于他们所在数组的平均值, 4 和 7 也都高于他们所在数组的平均值.所以计算结果…
MSCN系数是无参考的空间域图像质量评估算法BRISQUE(No-Reference Image Quality Assessment in the Spatial Domain)中提出的,MSCN系数具有由于失真的存在而改变的特征统计特性,并且量化这些变化将使得可以预测影响图像的失真类型以及其感知质量.这篇论文的大致原理是从图像中提取MSCN系数,然后将MSCN系数拟合成非对称性广义高斯分布,提取拟合的高斯分布的特征,输入到支持向量机SVM中做回归,最终得到图像质量的评分. 这篇论文提供了源代…
插值多项式的牛顿法 1.为何需要牛顿法? ​ 使用Lagrange插值法不具备继承性.当求好经过\(({x_0},{y_0})-({x_n},{y_n})\)共n+1个点的插值曲线时候,如果再增加一个点,由Lagrange插值法通式\[\sum_{k=0}^{n}\frac{\prod_{i=0,i\ne k}^{n}(x-x_i)}{\prod_{i=0,i\ne k}^{n}(x_k-x_i)}y_k\]可以知道,当再增加一个点时候,Lagrange 多项式还要重新计算以确定系数. 2.牛顿…
# 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") d…
计算局部相似矩阵 代码文档:https://github.com/lartpang/mypython/blob/master/2019-09-25%E8%AE%A1%E7%AE%97%E5%B1%80%E9%83%A8%E7%9B%B8%E5%85%B3%E6%80%A7%E7%9F%A9%E9%98%B5/%E8%AE%A1%E7%AE%97%E5%B1%80%E9%83%A8%E7%9B%B8%E5%85%B3%E6%80%A7.ipynb 问题说明 对于给定的数据,其尺寸为N,C,H,W,…
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1 因为篇幅关系就只放了部分程序在第三章,如有需求可自行fork项目原始链接. 0.1图计算基本概念 首先看到百度百科定义: 图…
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.com/83563/”中发现 # 原内容有少量笔误,并且对入门学友缺少一些信息.于是笔者做了增补,主要有: # 1.查询并简述了涉及的大部分算法: # 2.添加了连接或资源供进一步查询: # 3.增加了一些lib库的基本操作及说明: # 4.增加了必须必要的python的部分语法说明: # 5.增加了对…
1.  概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个 MultivariateStatisticalSummary 对象,这个对象包含列式的最大值.最小值.均值.方差等等. import org.apache.spark.mllib.linalg.Vector import org.apache.spark.mllib.stat.{Multivaria…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
第三章习题 部分证明题未给出答案 1. 表3.4中,零假设是指三种形式的广告对TV的销量没什么影响.而电视广告和收音机广告的P值小说明,原假设是错的,也就是电视广告和收音机广告均对TV的销量有影响:报纸的P值高,说明原假设成立,也就是报纸广告对TV的销量没啥影响. 2. KNN回归和KNN近分类都是典型的非参数方法.这两者的区别在于,前者的输入和输出均为定量值:而后者的输入和输入和输出均为定性值. 3. 首先,有题目可知下面关系:Y = 50 + 20(gpa) + 0.07(iq) + 35(…
汇总统计[Summary statistics]: Summary statistics提供了基于列的统计信息,包括6个统计量:均值.方差.非零统计量个数.总数.最小值.最大值. import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.linalg.Vector; import org.apache.spar…
User CF 和 Item CF 都依赖于相似度的计算,因为只有通过衡量用户之间或物品之间的相似度,才能找到用户的“邻居”,才能完成推荐.上文简单的介绍了相似性的计算,但不完全,下面就对常用的相似度计算方法进行详细的介绍: 1. 基于皮尔森相关性的相似度 —— Pearson correlation-based similarity 皮尔森相关系数反应了两个变量之间的线性相关程度,它的取值在[-1, 1]之间.当两个变量的线性关系增强时,相关系数趋于1或-1:当一个变量增大,另一个变量也增大时…
  image Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). 用GSEA做富集分析是非常简单的,结…