用pickle保存机器学习模型】的更多相关文章

在机器学习中,当确定好一个模型后,我们需要将它保存下来,这样当新数据出现时,我们能够调出这个模型来对新数据进行预测.同时这些新数据将被作为历史数据保存起来,经过一段周期后,使用更新的历史数据再次训练,得到更新的模型. 如果模型的流转都在python内部,那么可以使用内置的pickle库来完成模型的存储和调取. 什么是pickle?pickle是负责将python对象序列化(serialization)和反序列化(de-serialization)的模块.pickle模块可以读入任何python对…
1. Python环境设置和Flask基础 使用"Anaconda"创建一个虚拟环境.如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,"Anaconda"发行版是一个不错的选择. 安装here wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source…
需求: 一直写的代码都是从加载数据,模型训练,模型预测,模型评估走出来的,但是实际业务线上咱们肯定不能每次都来训练模型,而是应该将训练好的模型保存下来 ,如果有新数据直接套用模型就行了吧?现在问题就是怎么在实际业务中保存模型,不至于每次都来训练,在预测. 解决方案: 机器学习-训练模型的保存与恢复(sklearn)python /模型持久化 /模型保存 /joblib /模型恢复在做模型训练的时候,尤其是在训练集上做交叉验证,通常想要将模型保存下来,然后放到独立的测试集上测试,下面介绍的是Pyt…
scikit-learn系列之如何存储和导入机器学习模型   如何存储和导入机器学习模型 找到一个准确的机器学习模型,你的项目并没有完成.本文中你将学习如何使用scikit-learn来存储和导入机器学习模型.你可以把你的模型保持到文件中,然后再导入内存进行预测. 1. 用Pickle敲定你的模型 Pickle是python中一种标准的序列化对象的方法.你可以使用pickle操作来序列化你的机器学习算法,保存这种序列化的格式到一个文件中.稍后你可以导入这个文件反序列化你的模型,用它进行新的预测.…
一.概述   对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式.   PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言.如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格…
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定…
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. 先决条件 本文假设您对Docker有一定的了解.构建和部署示例应用程序还需要以下软件/依赖项.重要的是要注意应用程序是在Ubuntu 16.04 PC上构建的,但所有软件都是跨平台的,应该适用于任何环境. Docker Azure CLI .NET Core 2.0 Docker Hub Accou…
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方…
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环境比如Java,为了上一个机器学习模型去大动干戈修改环境配置很不划算,此时我们就可以考虑用预测模型标记语言(Predictive Model Markup Language,以下简称PMML)来实现跨平台的机器学习模型部署了. 1. PMML概述 PMML是数据挖掘的一种通用的规范,它用统一的XML…
1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Python训练模型,开发同学用Java写业务代码,这时候,Api就作为一种解决方案被使用. 简单地说,API可以看作是顾客与商家之间的联系方式.如果顾客以预先定义的格式提供输入信息,则商家将获得顾客的输入信息并向其提供结果. 从本质上讲,API非常类似于web应用程序,但它没有提供一个样式良好的HTML…