首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
10-numpy笔记-np.random.randint
】的更多相关文章
10-numpy笔记-np.random.randint
b_idx = np.random.randint(0, 9, 90) >>> b_idx array([0, 1, 5, 4, 7, 2, 7, 0, 0, 4, 2, 2, 3, 5, 6, 4, 7, 0, 3, 2, 7, 3, 8, 5, 4, 3, 1, 8, 6, 6, 5, 5, 3, 2, 2, 2, 0, 4, 8, 1, 5, 3, 2, 6, 2, 3, 3, 3, 0, 4, 5, 1, 4, 0, 6, 7, 6, 3, 4, 7, 8, 5, 8, 6, 7…
np.random.randn()、np.random.rand()、np.random.randint()
(1)np.random.randn()函数 语法: np.random.randn(d0,d1,d2……dn) 1)当函数括号内没有参数时,则返回一个浮点数: 2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵: 3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵: 4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tupl…
numpy中np.random.seed()的详细用法
在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的array import numpy as np a = np.random.randn(2,4) #4*2矩阵 print(a) b = np.ra…
numpy笔记—np.sum中keepdims作用
A = np.random.randn(4,3) B = np.sum(A, axis = 1, keepdims = True) 我们使用(keepdims = True)来确保 A.shape 是(4,1)而不是(4,),它使我们的代码更加严格.容易减少深度学习中代码bug…
numpy笔记—np.squeeze用法
import numpy as np x = np.array([[[0], [1], [2]]]) print(x.shape) d = np.squeeze(x) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉 print(d.shape)…
numpy:np.random.seed()
np.random.seed()函数可以保证生成的随机数具有可预测性. 可以使多次生成的随机数相同 1.如果使用相同的seed( )值,则每次生成的随即数都相同: 2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同. 在机器学习和深度学习中,如果要保证部分参数(比如W权重参数)的随机初始化值相同,可以采用这种方式来实现.…
Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgrid 与np.ogrid的目的都是为创建一个格栅区域,而mgrid返回的是相同维度的数组,ogrid仅返回本维度的数组,而创建格栅区域可以i这样理解:如果要确定一点(x,y),则对于mgrid返回值而言,首先取出所有数组的第x行,然后再第x行取出第y个数字,因此,mgrid的第一个数组x,每行都是相…
np.random.randint()的返回值
返回的是数组而非int 比如返回x,y 为[1][2] 而非1,2 容易在只有一维一列时没有意识到 其他函数的返回值也要注意…
numpy.random.randint
low.high.size三个参数.默认high是None,如果只有low,那范围就是[0,low).如果有high,范围就是[low,high). >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> np.ra…
关于NumPy的常用函数random.randint
np.random.randint(low, high=None, size=None, dtype='l') 该函数作用:用于产生离散均匀分布的整数 low:生成元素的最小值 high:生成元素的值一定小于high值 size:输出的大小,可以是整数也可以是元组 dtype:生成元素的数据类型 注意:high不为None,生成元素的值在[low,high)区间中:如果high=None,生成的区间为[0,low)区间…