[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种…
前言 不知看过多少次极大似然估计与最大后验概率估计的区别,但还是傻傻分不清楚.或是当时道行太浅,或是当时积累不够. 这次重游机器学习之路,看到李航老师<统计学习方法>中第一章关于经验风险最小化与结构风险最小化时谈到了极大似然与最大后验的话题,第一反应是竟然在第一章就谈到了极大似然与最大后验,相信大部分初学者看到这两个词时还是怕怕的,毕竟没有太多理论基础.不过没关系,多积累,多搜集相关资料,相信这层疑惑的云雾会逐渐散去的. 这次结合西瓜书和网上大牛的资料,加上自己推荐系统的研究背景以及自己的思考…
https://guangchun.wordpress.com/2011/10/13/ml-bayes-map/ http://www.mi.fu-berlin.de/wiki/pub/ABI/Genomics12/MLvsMAP.pdf 经验风险最小化: \min \limits_{f\in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i,f(x_i)) 结构风险最小化: \min \limits_{f\in \mathcal{F}} \frac{1…
[白话解析] 深入浅出一致性Hash原理 0x00 摘要 一致性哈希算法是分布式系统中常用的算法.但相信很多朋友都是知其然而不知其所以然.本文将尽量使用易懂的方式介绍一致性哈希原理,并且通过具体应用场景来帮助大家深入这个概念. 0x01. 概念&原理 Hash,一般翻译做散列.杂凑,或音译为哈希,是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值. 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,主要是…
[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗解释. 0x01 问题 在学习核函数的时候,我一直有几个很好奇的问题. Why 为什么线性可分很重要? Why 为什么低维数据升级到高维数据之后,就可以把低维度数据线性可分? What 什么是核函数,其作用是什么? How 如何能够找到核函数? 不知道大家是否和我一样有这些疑问,在后文中, 我将通过…
https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html#3543182…
参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知.最佳估计就是使得产生当前样本的概率最大下的参数值. 贝叶斯估计 已知样本满足某种概率分布,但参数未知.贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量.对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估…
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法. 1.最大似然估计(MLE) 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 也就是说,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知). (1)基本思想 当从模型总体…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…