次元传送门:洛谷P1315 思路 思路大概想到了 可是代码实现却没想到 所以参考题解了 D2T3的贪心果然有难度 我们考虑在每次用加速器有两种情况 到下一个点还需要等待:以后的时间就不再影响了 到下一个点不需要等待:那么就会影响到后面的时间直到出现情况1(或者到最后一个点) 用sum[i]数组记录到i时的总人数 进行前缀和处理 e[i]为i可以影响到的最远的点 那么sum[i + e[i]] - sum[i] 即是能影响到的人数 这里需要用到贪心思想 即把影响最大的点用加速器 代码 #inclu…
P1315 观光公交 题目描述 风景迷人的小城Y 市,拥有n 个美丽的景点.由于慕名而来的游客越来越多,Y 市特意安排了一辆观光公交车,为游客提供更便捷的交通服务.观光公交车在第 0 分钟出现在 1号景点,随后依次前往 2.3 .4 ……n 号景点.从第 i 号景点开到第 i+1 号景点需要 Di 分钟.任意时刻,公交车只能往前开,或在景点处等待. 设共有m 个游客,每位游客需要乘车1 次从一个景点到达另一个景点,第i 位游客在Ti 分钟来到景点 Ai ,希望乘车前往景点Bi (Ai<Bi ).…
传送门 题目大意 给定从左到右的$n$个车站以及两两之间通行的需要的时间. 有$m$个人,第$i$个人会在$T_i$时刻出现在$a_i$车站,目的地是$b_i$. 一辆车第$0$时刻出现在一号站台,从左向右驶去,每经过一个车站(包括$1$号),它会等待知道所有应该在该站台出现的乘客都出现才会继续驶向下一个站台. 定义一个人花费的时间是列车到达$b_i$的时刻$-T_i$.你有$k$次机会使得某相邻两站花费的时间减少一个时间单位(需要始终保证非负),求这$m$个人花费时间之和的最小值. 题解 在$…
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师)的掌握程度 考完试有人说这题是马拉车,吓死我了 首先,你把数据读入之后,先用一个大法师把以每个节点为根的子树的大小和权值都预处理出来,方便待会剪枝 然后,你对以每个节点为根的子树,都判断一下以下条件(这时刚才处理的东西就有用了) ① 左子树和右子树的节点数是否相等 ② 左子树和右子树的权值是否相等…
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种是通过分成 多块后在每块上打标记以实现快速区间修改,区间查询的一种算法.根号 分治与其思路相似,将原本若一次性解决时间复杂度很高的问题分块去解 决来降低整体的时间复杂度. 例题 以本题举例子哈希冲突 本题作为论文的第一道题目,是一道很好的练习题,注意,本体给出的 \(value[i]\) 是 \(i…
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 LCP 长度数组 \(p\). 数据范围:\(1\le |a|,|b|\le 2\times 10^7\). 蒟蒻语 别的题解为什么代码那么长.讲解那么复杂?蒟蒻不解,写篇易懂一点的,希望没有错误理解. 注意:蒟蒻的下标是从 \(0\) 开始的. 蒟蒻解 定义 \(z(i) (i>0)\):后缀 \(…
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \(\max_{k=l_i}^{r_i}h_k=g_i\).求满足条件的 \(h_i\) 的方案数膜 \(998244353\). 数据范围:\(1\le T\le 20\),\(1\le l_i\le r_i\le n\le 9\cdot 10^8\),\(1\le g_i\le A\le 9\cdo…
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积的讲解. 三位向量的运算 模长: 即向量长度,\(|\vec{a}|=\sqrt{x_a^2+y_a^2+z_a^2}\). 点积: 标量 \(\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos<\vec{a},\vec{b}>=x_ax_b+y_ay_b+z_a…
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) 互不相等.将糖果和药片一一对应,求 糖果能量大于药片 比 药片能量大于糖果 多 \(k\) 组的方案数. 数据范围:\(1\le n\le 2000\),\(0\le k\le n\). 萌新初学二项式反演,这是第一道完全自己做出来的题,所以写篇题解庆祝并提升理解. 有 \(\frac{n+k}{2…
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\texttt{D x}\),删除第 \(x\) 个字母. \(\texttt{R x y}\),反转当前文本中的区间 \([x,y]\). \(\texttt{P x}\),输出初始文本中第 \(x\) 个字母在当前文本中的位置.特别地,若不存在,输出 \(0\). \(\texttt{T x}\),输…