当我们在进行机器学习时着重要考虑什么问题.以垃圾邮件分类为例子.假如你想建立一个垃圾邮件分类器,看这些垃圾邮件与非垃圾邮件的例子.左边这封邮件想向你推销东西.注意这封垃圾邮件有意的拼错一些单词,就像Med1cine中有一个1,m0rtgage里有个0.右边的邮件显然不是一个垃圾邮件. 假设我们已经有一些加过标签的训练集,比如标注垃圾邮件为y=1,和非垃圾邮件为y=0.那么如何用监督学习的方法来构造一个分类器,区分垃圾邮件和非垃圾邮件呢?为了应用监督学习,首先必须确定的是,如何用邮件的特征构造向量…
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for applying machine learning & Machinelearning system design 这两课介绍的就是在设计机器学习系统的时候,我们该怎么做? 假设我们实现了一…
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是和两个都有关,搞清楚这点很重要.能判断出现的情况是这两种中的哪一种,是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径. 下面深入地探讨一下有关偏差和方差的问题,并且能弄清楚怎样评价一个学习算法.能够判断一个算法是偏差还是方差有问题.因为这个问题对于弄清如何改进学习算法的效果非常重要. 如…
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http://cs229.stanford.edu/syllabus.html http://www.cnblogs.com/jerrylead/default.html?page=3 http://www.cnblogs.com/madrabbit/ https://blog.csdn.net/xiahouz…
7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to Work On 7.2 Error Analysis 7.3 Error Metrics for Skewed Classed 7.3.1 Precision/Recall 7.3.2 Trading off precision and recall: F1 Score 7.4 Data for ma…
http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Machine Learning System Design机器学习系统设计 Prioritizing What to Work On优先考虑做什么 the first decision we must make is how do we want to represent x, that is…
2015-07-06 第一讲   课务.iOS概述 -------------------------------------------------- 开始学习斯坦福大学公开课:iOS 7应用开发留下笔记…
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件,左边是一封垃圾邮件Spam,右边是一封非垃圾邮件Non-Spam:垃圾邮件有很多features.如果我们想要建立一个Spam分类器,就要进行有监督学习,将Spam的features提取出来,而希望这些features能够很好的区分Spam.事实上,对于spam分类器,通常选取spam中词频最高的…
Machine Learning System Design下面会讨论机器学习系统的设计.分析在设计复杂机器学习系统时将会遇到的主要问题,给出如何巧妙构造一个复杂的机器学习系统的建议.6.4 Building a Spam Classifier6.4.1 Prioritizing What to Work On首先是在设计机器学习系统时需要着重考虑什么问题.以垃圾邮件分类为例.1.确定用监督学习的方法进行学习和预测.2.确定关于邮件的特征.关于挑选特征,实际工作中,是遍历整个训练集,选出出现次数…
In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning…