4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. 不互质怎么办? 我才知道, \[ n^x \equiv n^{x \mod \varphi(p)\ +\ \varphi(p)} \pmod p,\ x \ge \varphi(p) \] 不要求互质,只要求\(x \ge \varphi(p)\) 然后就很好做了...线段树维护每个点的操作次数和和…
4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个log不知道是不是暴力啊) 但是需要拓展欧拉定理: p与a不互质时,设c=b mod φ(p)(专门设出来是因为公式不能正常显示),如果b>=φ(p):$a^b ≡ a^{c+φ(p)}$(注意b<φ(p)的时候不能用) 要证明的话可以用数学归纳法证. 可是题目翻车了…… 大家都质疑题目数据有问题…
题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为这个结果可能会很大,所以你只需要输出结果mod…
题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varphi(p) + [a \ge p]p} \pmod p\] 我们发现当我们进行\(0\)操作,就相当于在\(a\)底部添加一层\(c\) 当我们进行得足够多的时候,\(\varphi(p)\)就会取到\(1\),从而不再变化 所以每个位置操作次数其实是有限的,为\(O(logp)\)次 为何是\(O…
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度可以描述的,这也是常识. 所以,此题要用到很多数论知识. 欧拉函数 定义 \(\varphi(n)\) 为 \([1,n]\) 中与 \(n\) 互质的正整数个数(包括 \(1\)). 通式 \(\displaystyle \varphi(n)=n\prod_{p|n}(1-{1\over p})\…
BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色,这就和CF600E类似了.直接用\(dsu\). 修改某个颜色出现次数的时候,最大值不能\(O(1)\)求出,得套个\(set\),所以复杂度是\(O(q\log^2n)\).但常数并不大. 关于复杂度,在CF600E中对一个点的修改是\(O(1)\)的,而本题中可能是\(O(q)\)(一个点上挂着…
Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是 输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为 这个结果可能会很大,所以你只需要输出结…
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P3747#sub 参考洛谷的前两篇(也是仅有的两篇)题解. 首先我们要知道一个公式: 这又被叫做扩展欧拉定理,证明我们并不关心. 有了扩展欧拉定理,我们就能够避免高精度从而求出对于任意一个数的0操作之后变成什么数了. (递归或者迭代选一个,递归好理解,迭代有助于理解下面的题解,而且常数小) 我们又有…
巨难!!! 去年六省联考唯一的一道黑牌题,我今天一天从早到晚,把它从暴力15分怼到了90分,极端接近正解了. bzoj上A了,但是洛谷和loj上面就不行.伪正解会T,奇奇怪怪的类正解会WA.. 那么,网上的题解多得很,我就不细说了. 着重说一下我的理解感受和坑点. 1.不愧是黑牌题,显得十分的繁杂(并不). 首先要用到扩展欧拉定理,φ(),还有线段树辅助,快速幂,大量奇奇怪怪的小细节.....要人命啊. 2.根据之前那题上帝集合,我们可以得知当一个数被操作很多很多很多很多次之后就不变了,成为一个…
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论姿势: 1.扩展欧拉定理 //我们熟知的费马小定理用于p是质数,欧拉定理用于a,p互质,而这道题都不满足这个限制 当\((b>=\phi(p))\)时,\(a^b=a^{b\mod \phi(p) + \phi(p)}\) 2.(其实不算数论姿势)一个数最多经过log此\(\phi\)就会变成1 所…