Hive SQL 分类】的更多相关文章

题目: 请使用Hive SQL实现下面的题目. 下面是一张表名为user_buy_log的表,有三个字段,user(用户),grp(分组编号),time(购物时间). 需要将用户按照grp分组,对time进行升序排序, 如果用户间购物时间间隔小于5分钟,则认为是一个小团体,标号为1: 如果时间间隔大于5分,标号开始累加1. user grp time num15 B 2019-01-06 13:44:20.0 num17 B 2019-01-06 13:47:24.0 num10 A 2019-…
需求 在推荐系统场景中,假设基础行为数据太少,或者过于稀疏,通过推荐算法计算得出的推荐结果非常可能达不到要求的数量. 比方,希望针对每一个item或user推荐20个item,可是通过计算仅仅得到8个.剩下的12个就须要补全. 欢迎转载,请注明出处: http://blog.csdn.net/u010967382/article/details/39674047 策略 数据补全的详细策略是: 补全时机:在挖掘计算结束后,挖掘结果导入HBase(终于web系统从HBase取数据)前.进行数据补全,…
date: 2018-11-16 19:03:08 updated: 2018-11-16 19:03:08 Hive sql函数 一.关系运算 等值比较: = select 1 from dual where 1 = 2; 等值比较:<=> a <=> b 不等值比较: <>和!= a != b || a <> b 小于比较: < a < b 小于等于比较: <= a <= b 大于比较: > a > b 大于等于比较:…
本文整体分为两部分,第一部分是简写,如果能看懂会用,就直接从此部分查,方便快捷,如果不是很理解此SQL的用法,则查看第二部分,是详细说明,当然第二部分语句也会更全一些! 第一部分: hive模糊搜索表:show tables like '*name*'; 查看表结构信息:desc table_name; 查看分区信息:show partitions table_name; 加载本地文件:load data local inpath '/xxx/test.txt' overwrite into t…
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需 要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把 己写的mapper 和reducer 作为插件…
1.概述 在开发工作当中,提交 Hadoop 任务,任务的运行详情,这是我们所关心的,当业务并不复杂的时候,我们可以使用 Hadoop 提供的命令工具去管理 YARN 中的任务.在编写 Hive SQL 的时候,需要在 Hive 终端,编写 SQL 语句,来观察 MapReduce 的运行情况,长此以往,感觉非常的不便.另外随着业务的复杂化,任务的数量增加,此时我们在使用这套流程,已预感到力不从心,这时候 Hive 的监控系统此刻便尤为显得重要,我们需要观察 Hive SQL 的 MapRedu…
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需 要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把 己写的mapper 和reducer 作为插件…
一. 创建表 在官方的wiki里,example是这种: Sql代码   CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name…
相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展.   在Hive的世界里使用自定义UDF的过程是比较复杂的.我们需要根据需求使用Java语言开发相…
Spark SQL使用时需要有若干“表”的存在,这些“表”可以来自于Hive,也可以来自“临时表”.如果“表”来自于Hive,它的模式(列名.列类型等)在创建时已经确定,一般情况下我们直接通过Spark SQL分析表中的数据即可:如果“表”来自“临时表”,我们就需要考虑两个问题:   (1)“临时表”的数据是哪来的? (2)“临时表”的模式是什么?   通过Spark的官方文档可以了解到,生成一张“临时表”需要两个要素:   (1)关联着数据的RDD: (2)数据模式:   也就是说,我们需要将…