数据集的合并或连接运算是通过一个或多个键将行链接起来的.这些运算是关系型数据库的核心.pandas的merge函数是对数据应用这些算法的这样切入点. 默认是交集, inner连接 列名不同可以分别指定: 其他方式还要‘left’.‘right’以及“outer”.外链接求取的是键的并集, 组合了左连接和右连接的效果. how 的作用是合并时候以谁为标准,是否保留NaN值 多对多 多对多 连接产生的行的笛卡尔积.由于左边的DataFrame有3个‘b’行, 右边的有2个,所以最终结果中 就有6个‘…
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠到一起. 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值. 2. 数据风格的DataFrame合并操作 2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的.如果没有指定,merge就会将重叠列的列名当做键…
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 import pandas as pdimport numpy as npimport time start = time.time()# 1.合并数据集,有merge.join.concat三种方式# 1.1.数据库风格的dataframe合并(merge & join)# merge函数将两个dataf…
这一部分非常关键! 数据分析和建模方面的大量编程工作都是用在数据准备上的:加载.清理.转换以及重塑. 1.合并数据集 pandas对象中的数据可以通过 一些内置的方式进行合并: pandas.merge可根据一个或多个健将不同DataFrame中的行连接起来.实现的就是数据库的连接操作 pandas.concat可以沿着一条轴将多个对象堆叠到一起 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值(通俗来说,差不多就是数据库的全外连接,简单地说,…
数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Perl.R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理.幸运的是,pandas和Python标准库提供了一组高级的.灵活的.高效的核心函数和算法,它们使你可以轻松地将数据规整化为正确的形式. 1.合并数据集 pandas对象中的数据能够通过一些内置的方式进行合并: pan…
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别.抽象点说,它使你能以低纬度形式处理高纬度数据.我们来看一个简单的栗子:创建一个Series,并用一个由列表或数组组成的列表作为索引: data = pd.Series(np.random.randn(9), index=[['a',…
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 第9节 绘图和可视化 pandas 回顾 一.实验简介 学习数据分析的课程,需要同学们掌握好 Python 的语言基础,和对 Numpy 与 Matplotlib 等基本库有一些了解.同学们可以参考学习实验楼的 Python 语言基础教程与 Python 科学计算的课程. pandas 是后面我们…
数据分析和建模大部分时间都用在数据准备上,数据的准备过程包括:加载,清理,转换与重塑. 合并数据集 pandas对象中的数据可以通过一些内置方法来进行合并: pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来,实现类似于数据库中的连接操作. pandas.cancat表示沿着一条轴将多个对象堆叠到一起. 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象的缺失值. 下面将进行分别讲解: 1.数据库风格的DateFrame合并…
学习时间:2019/11/03 周日晚上23点半开始,计划1110学完 学习目标:Page218-249,共32页:目标6天学完(按每页20min.每天1小时/每天3页,需10天) 实际反馈:实际XXX学完,耗时X天,X小时,平均每页X分钟. 实际应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本章关注可以聚合.合并.重塑数据的方法. 8.1 层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使得能在一个轴上拥有多个(两个以上)…
本章概要 1.去重 2.缺失值处理 3.清洗字符型数据的空格 4.字段抽取 去重 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() #导入pandas包中的read_csv函数 from pandas import read_csv df=read_csv('路径') #找出行重复的位置 dIndex=df.duplicated() #也可根据某些列,找出重复的位置 dIndex=df.duplicated('age') dIndex=df.duplicate…