Hive 在工作中的调优总结】的更多相关文章

Hive 的简单使用及调优参考文档   HIVE的使用 命令行界面 使用一下命令查看hive的命令行页面, hive --help --service cli 简化命令为hive –h 会输出下面的这些东西 -d,--define <key=value> Variable subsitution to apply to hive commands. e.g. -d A=B or --define A=B --database <databasename> Specify the d…
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
Hive作为大数据平台举足轻重的框架,以其稳定性和简单易用性也成为当前构建企业级数据仓库时使用最多的框架之一. 但是如果我们只局限于会使用Hive,而不考虑性能问题,就难搭建出一个完美的数仓,所以Hive性能调优是我们大数据从业者必须掌握的技能.本文将给大家讲解Hive性能调优的一些方法及技巧. Hive性能调优的方式 为什么都说性能优化这项工作是比较难的,因为一项技术的优化,必然是一项综合性的工作,它是多门技术的结合.我们如果只局限于一种技术,那么肯定做不好优化的. 下面将从多个完全不同的角度…
一,查看工作模式 /usr/sbin/httpd -l Compiled in modules:  core.c  prefork.c  http_core.c  mod_so.c 如果出现prefork.c,表示apache工作在prefork模式下 二,prefork调优 ServerLimit 3000 StartServers 750 MinSpareServers 5 MaxSpareServers 100 MaxClients 3000 MaxRequestsPerChild 100…
该文档为根据相关资料整理.总结而成,主要讲解Oracle数据库中,获取SQL语句执行计划的最权威.最正确的方法.步骤,此外,还详细说明了每种方法中可选项的意义及使用方法,以方便大家和自己日常工作中查阅使用,因本人未发现本博客支持附件上传功能,需要PDF文件格式的朋友可向我要,也可到群里下载,转载请注明出处. 1.查询v$sql_plan: SQL> col "Query Plan_Table" format a100 SQL> select id,lpad(' ', 2*(…
1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.engine=mr 所以针对mr的优化就是hive的优化,比如压缩和临时目录 mapred-site.xml <property> <name>mapreduce.map.output.compress</name> <value>true</value>…
虽然当前各关系库CBO都已经非常先进和智能,但因为关系库理论和实现上的限制,CBO在特殊场景下也会给出次优甚至存在严重性能问题的执行计划,而这些场景中,有一部分只能或适合通过关系库提供的hints来进行干涉和解决.目前,所有三个商业数据库都提供了一定数目的hints,虽然具体使用语法或形式有所差别,但本质都是一样的,那就是指示数据库CBO给出更合理.更高效的执行计划选择.MSSQL作为商业库之一,hints功能当然不会少,下面,对MSSQL中支持和常用的hints做简单介绍. 1.{HASH |…
Spark是时下非常热门的大数据计算框架,以其卓越的性能优势.独特的架构.易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用.与Hadoop.HBase生态圈的众多项目一样,Spark的运行离不开JVM的支持.由于Spark立足于内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制(GC).并且同时,它也支持兼容批处理和流式处理,对于程序吞吐量和延迟都有较高要求,因此GC参数的调优在Spark应用实践中显得尤为重要.本文主要讲述如何针对Spark应用程序配置JV…
作者:仲浩   出处:<程序员>电子刊5月B   摘要:Spark立足内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制.与此同时,它也兼容批处理和流式处理,对于程序吞吐量和延迟都有较高要求,因此GC参数的调优在Spark应用实践中显得尤为重要. Spark是时下非常热门的大数据计算框架,以其卓越的性能优势.独特的架构.易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用.与Hadoop.HBase生态圈的众多项目一样,Spark的运行离不开JVM的支持.由于…