Extreme Learning Machine(ELM)的工程哲学 David_Wang2015 发布于2015年5月6日 11:29 工程问题往往需要的是一定精度范围内的结果,而不是“真正的”结果.得到问题解的一般方式是迭代求解,而ELM的求解方式是利用随机数和大数定律求解,这种方法论在20世纪40年代蒙特卡洛求积分(用于曼哈顿计划).80年代的模拟退火(求解复杂优化问题).90年代的Turbo码(首次使信道编码达到香农极限).21世纪初的压缩感知.鲁邦主成分分析都有体现.注意,不是简单地使…
树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning 2018-04-17 08:32:39 看_这是一群菜鸟 阅读数 1906  收藏 更多 分类专栏: 论文解读   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_24305433/article/details/79856672 一.…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 配置GPU或CPU设置 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 超参数设置 num_epochs = 5 num_classes = 10 batch_size = 100 learning_…
ELM算法模型是最近几年得到广泛重视的模型,它不同于现在广为火热的DNN. ELM使用传统的三层神经网络,只包含一个隐含层,但又不同于传统的神经网络.ELM是一种简单易用.有效的单隐层前馈神经网络SLFNs学习算法.2006年由南洋理工大学黄广斌副教授提出.传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解.极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好…
一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将物体分为几个大类,然后再将各个大类依次进行划分.识别,就像树一样不断地开枝散叶,最终叶节点得到的类别就是我们所要识别的类. 二.网络结构及学习策略¶ 1. 网络结构 Tree-CNN模型借鉴了层分类器,树卷积神经网络由节点构成,和数据结构中的树一样,每个节点都有自己的ID.父亲(Parent)及孩子…
1. ELM 是什么 ELM的个人理解: 单隐层的前馈人工神经网络,特别之处在于训练权值的算法: 在单隐层的前馈神经网络中,输入层到隐藏层的权值根据某种分布随机赋予,当我们有了输入层到隐藏层的权值之后,可以根据最小二乘法得到隐藏层到输出层的权值,这也就是ELM的训练模型过程. 与BP算法不同,BP算法(后向传播算法),输入层到隐藏层的权值,和隐藏层到输出层的权值全部需要迭代求解(梯度下降法) 用一张老图来说明,也就是说上图中的Wi1,Wi2,Wi3 在超限学习机中,是随机的,固定的,不需要迭代求…
原文地址:http://blog.csdn.net/google19890102/article/details/18222103   极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的学习算法速度更快. ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输 出权重.对于一个单隐层神经网络,假设有个…
Convolutional Neural Network Overview A Convolutional Neural Network (CNN) is comprised of one or more convolutional layers (often with a subsampling step) and then followed by one or more fully connected layers as in a standard multilayer neural net…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…