numpy中计算相关系数的np.corrcoef】的更多相关文章

摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数.通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公司下的不同的子公司.可能因两家公司经营的业务类型相同,面临同样的挑战,需要相同的原料和资源,并且争夺同类型的客户. 实际中,有很多这样的例子,如果要检验一下…
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题.在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程.查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西.先把代码给出. import numpy as np # A = np.mat('1 2 3;2 -1 1;3 0 -1') A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8,…
一.np.var 数学上学过方差:$$ D(X)=\sum_{i\in [0,n)} ({x-\bar{x}})^2 $$ np.var()实际上是均方差,均方差的意义就是将方差进行了平均化,从而使得此值不会随着数据的增多而发生变化. np.std()是标准差,np.std()的平方等于np.var(),标准差在高斯分布中用$\sigma$表示. 不论是方差还是标准差,它们衡量的都是二阶中心矩.为什么是二阶而不是一阶?这是一个问题. 函数原型:numpy.var(a, axis=None, dt…
上一篇通过公式自己写了一个计算两组数据的皮尔逊积矩相关系数(Pearson's r)的方法,但np已经提供了一个用于计算皮尔逊积矩相关系数(Pearson's r)的方法 np.corrcoef() : a = pd.Series([1,2,3,4,5,6,7,8,9,10]) b = pd.Series([2,4,1,5,1,3,6,2,7,0]) c = pd.Series([0,3,2,1,4,7,1,9,6,2]) x = np.vstack((a,b,c)) r = np.corrco…
成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图.周线图.月线图甚至是5分钟.30分钟.60分钟图中绘制. 股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标.一般情况下,成交量大且价格上涨的股票,趋势向好.成交量持续低迷时,一般出现在熊市或股票整理阶段,市场交易不活跃.成交量是判断股票走势的重要依据,对分析主力行为提供了重要的依据.投资者对成交量异常波动的股票应当密切关注. OBV(On-Balance…
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge() import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.c_[a,b] print(np.r_[a,b]) print(c) print(np.c_[c,a]) 结果如下: [1 2 3 4 5 6…
numpy中的np.round()取整的功能和注意 功能 np.round() 是对浮点数取整的一个函数,一般的形式为 np.round(a, b),其中a为待取整的浮点数,b为保留的小数点的位数 注意 当小数部分是0.5时,np.round(),"去奇存偶",或者说 "4舍6入5凑偶" 与一般理解的四舍五入不同,在误差理论中:当整数部分是偶数,小数部分是0.5时,向下取整,最后结果为偶数:当整数部分是奇数,小数部分是0.5时,则向上取整,最后结果为偶数.这样得到的…
# -*- coding: utf-8 -*- """ Created on Mon Jan 8 19:36:48 2018 @author: markli """ import numpy as np; import math; ''' 计算矩阵A的相关系数矩阵 ''' def Correlation(A): #得到A的形状 m 是行数 n 是列数 m,n = A.shape; #存放每一列的均值 means = []; #存放每一列的方差 v…
衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,简称 PPMCC或PCCs),是用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间. 实际可用如下公式进行计算: 若大于0,表示正向相关,小于0,表示负向相关,等于0,表示不相关 二.决定系数:…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…