详解MRS HBase全局二级索引】的更多相关文章

HBase详解(05) - HBase优化 整合Phoenix 集成Hive HBase优化 预分区 每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护.那么依照这个原则,可以将数据所要投放的分区提前大致的规划好,以提高HBase性能. 1.手动设定预分区 hbase> create 'staff1','info',SPLITS => ['1000','2000','3000','4000']…
一:HBase的二级索引 1.讲解 uid+ts 11111_20161126111111:查询某一uid的某一个时间段内的数据 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+uid 20161126111111-111111 info:uid uid+ts 检索流程: 从索引表中根据时间段来查询源表rowkey 根据rowkey来查询源表 二:phoenix的安装 1.上传源文件包 2.解压到modules文件夹下 tar -zxvf phoenix-4.2.2-src…
一:问题由来 1.举例 有A列与B列,分别是年龄与姓名. 如果想通过年龄查询姓名. 正常的检索是通过rowkey进行检索. 根据年龄查询rowkey,然后根据rowkey进行查找姓名. 这样的效率不高,因为要两次scan. 2.建议有一张索引表. 二:HBase的二级索引 1.讲解 rowkey是uid+ts 11111_20161126111111: 这个rowkey方便查询某一uid的某一个时间段内的数据 问题: 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+uid…
HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索. 假设我们相对hbase里面列族的列列进行一些组合查询.就须要採用HBase的二级索引方案来进行多条件的查询. 常见的二级索引方案有下面几种: 1.MapReduce方案 2.ITHBASE方案 3.IHBASE方案 4.Coprocessor方案 5.Solr+hbase方案 MapReduce方案 IndexBuilder:利用MR的方式构建Index 长处:并发批量构建Index 缺点:不能实时构建Index 举例:…
HBase详解(04) - HBase Java API使用 环境准备 新建Maven项目,在pom.xml中添加依赖 <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>2.0.5</version> </dependency> <dependency> &l…
1. ZK的监控机制 1.1 监听数据的变化  (1)监听一次 public class ChangeDataWacher { public static void main(String[] args) throws Exception { // 连接并获取zk客户端的对象 ZooKeeper zk = new ZooKeeper("feng01:2181,feng02:2181,feng03:2181", 2000, null); zk.getData("/user&qu…
文章来源:http://www.open-open.com/lib/view/open1421501717312.html 实现目的: 由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想要实现关系型数据库那样可以随意组合的多条件查询.查询总记录数.分页等就比较麻烦了.想要实现这样的功能,我们可以采用两种方法: 使用hbase提供的filter, 自己实现二级索引,通过二级索引 查询多符合条件的行健,然后再查询hbase. 第一种方法不多说了,使用起来很方便,但是局限性也很大,hba…
Coprocessor方式二级索引 1. Coprocessor提供了一种机制可以让开发者直接在RegionServer上运行自定义代码来管理数据.通常我们使用get或者scan来从Hbase中获取数据,使用Filter过滤掉不需要的部分,最后在获得的数据上执行业务逻辑.但是当数据量非常大的时候,这样的方式就会在网络层面上遇到瓶颈.客户端也需要强大的计算能力和足够大的内存来处理这么多的数据,客户端的压力就会大大增加.但是如果使用Coprocessor,就可以将业务代码封装,并在RegionSer…
一.快速入门 1. 查看集群的健康状况 http://localhost:9200/_cat http://localhost:9200/_cat/health?v 说明:v是用来要求在结果中返回表头 状态值说明 Green - everything is good (cluster is fully functional),即最佳状态Yellow - all data is available but some replicas are not yet allocated (cluster i…
1.简介 MapReduce计算框架是二代hadoop的YARN一部分,能够提供大数据量的平行批处理.MR只提供了基本的计算方法,之所以能够使用在不用的数据格式上包括HBase表上是因为特定格式上的数据读取和写入都实现了各自的inputformat和outputformat,这样MR就通过这两个接口屏蔽了各个数据源的产异性,统一计算框架.本文主要介绍如何让HBase表作为MR计算框架的输入和输出源,并通过实现一个简历二级索引的小例子来介绍. 2. HBase与MR关系 HBase和MapRedu…