Spark RDD的宽依赖中存在Shuffle过程,Spark的Shuffle过程同MapReduce,也依赖于Partitioner数据分区器,Partitioner类的代码依赖结构主要如下所示: 主要是HashPartitioner和RangePartitioner两个类,分别用于根据RDD中key的hashcode值进行分区以及根据范围进行数据分区 一.Partitioner Spark中数据分区的主要工具类(数据分区类),主要用于Spark底层RDD的数据重分布的情况中,主要方法两个,如…
一.区别 ①本质上相同,都是把Map端数据分类处理后交由Reduce的过程. ②数据流有所区别,MR按map, spill, merge, shuffle, sort, r educe等各阶段逐一实现.Spark基于DAG数据流,可实现更复杂数据流操作(根据宽/窄依赖实现) ③实现功能上有所区别,MR在map中做了排序操作,而Spark假定大多数应用场景Shuffle数据的排序操作不是必须的,而是采用Aggregator机制(Hashmap每个元素<K,V>形式)实现.(下面有较详细说明) p…
2分钟读懂Hadoop和Spark的异同 2016.01.25 11:15:59 来源:51cto作者:51cto ( 0 条评论 )   谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生.但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同. 解决问题的层面不一样 首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同.Hadoop实质上更多是一个分布式数据基础设施: 它将巨…
链接地址: http://dongxicheng.org/framework-on-yarn/apache-spark-comparing-three-deploying-ways/ Spark On Mesos模式 http://vdisk.weibo.com/s/zm_eIVP-TpyqK…
区别 :http://www.voidcn.com/article/p-wsqbotem-boa.html 获取列名的列表: DataFrame.columns.values.tolist()…
Scala中sortBy是以方法的形式存在的,并且是作用在Array或List集合排序上,并且这个sortBy默认只能升序,除非实现隐式转换或调用reverse方法才能实现降序,Spark中sortBy是算子,作用出发RDD中数据进行排序,默认是升序可以通过该算子的第二参数来实现降序排序的方式…
repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 PairRDD时,结果却不一样: 不难发现,其实 partitionBy 的结果才是我们所预期的,我们打开 repartition 的源码进行查看: /** * Return a new RDD that has exactly numPartitions partitions. * * Can…
目录 Part III. Low-Level APIs Resilient Distributed Datasets (RDDs) 1.介绍 2.RDD代码 3.KV RDD 4.RDD Join Advanced RDDs 1.partition 2.自定义Aggregation函数 3.iterator-to-iterator transformation 4.KV排序例子 Distributed Shared Variables Broadcast Variables(immutable)…
分区的意义 Spark RDD 是一种分布式的数据集,由于数据量很大,因此它被切分成不同分区并存储在各个Worker节点的内存中.从而当我们对RDD进行操作时,实际上是对每个分区中的数据并行操作.Spark根据字段进行partition类似于关系型数据库中的分区,可以加大并行度,提高执行效率.Spark从HDFS读入文件的分区数默认等于HDFS文件的块数(blocks),HDFS中的block是分布式存储的最小单元.       1. RDD repartition和partitionBy的区别…
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
摘要: 1.背景 2.rangeBounds 上边界数组源码走读 3.RangePartitioner的sketch 源码走读 4.determineBounds 源码走读 5.关于RangePartitioner和sortByKey实验 内容: 1.背景:这是一个填之前Spark RDD 核心总结这篇博文中RangePartitioner留下的坑,没想到又发现一个坑(XORShiftRandom:生成随机数的一个算法,有时间再来总结) RangePartitioner 是Spark Parti…
排序,真的非常重要! RDD.scala(源码) 在其,没有罗列排序,不是说它不重要! 1.基础排序算法实战 2.二次排序算法实战 3.更高级别排序算法 4.排序算法内幕解密 1.基础排序算法实战 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoo…
目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standalone模式的Spark架构 YARN模式的Spark架构 应用程序资源构建 API WordCount示例 RDD构建 RDD缓存与持久化 RDD分区数 共享变量 RDD Operation RDD Operation隐式转换 RDD[T]分区Operation RDD[T]常用聚合Operati…
1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism res0: Int = 2 由以上可知,如果第二个参数如果不设置默认为2,默认的并行度最大不超过2.  实例1:读取本地文件创建RDD scala> val rdd1=sc.textFile("file:///usr/local/doc/name1.txt") rdd1: org.…
partitionBy 重新分区, repartition默认采用HashPartitioner分区,自己设计合理的分区方法(比如数量比较大的key 加个随机数 随机分到更多的分区, 这样处理数据倾斜更彻底一些) /** * An object that defines how the elements in a key-value pair RDD are partitioned by key. * Maps each key to a partition ID, from 0 to `num…
Working with key/value Pairs Motivation Pair RDDs are a useful building block in many programs, as they expose operations that allow u to act on each key in parallel or regroup data across network. Eg: pair RDDs have a reduceByKey() method that can a…
数据本地性 数据计算尽可能在数据所在的节点上运行,这样可以减少数据在网络上的传输,毕竟移动计算比移动数据代价小很多.进一步看,数据如果在运行节点的内存中,就能够进一步减少磁盘的I/O的传输.在spark中,数据本地性优先级从高到低为PROCESS_LOCAL>NODE_LOCAL>NO_PREF>RACK_LOACL>ANY即最好是运行在节点内存中的数据,次要是同一个NODE,再次是同机架,最后是任意位置.        PROCESS_LOCAL   进程本地化:task要计算的…
Spark 是一个用来实现快速而通用的集群计算的平台.在速度方面,Spark 扩展了广泛使用的MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理.在处理大规模数据集时,速度是非常重要的.Spark 的一个主要特点就是能够在内存中进行计算,因而更快.不过即使是必须在磁盘上进行的复杂计算,Spark 依然比MapReduce 更加高效. 总的来说,Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理.迭代算法.交互式查询.流处理.通过在一个统一的框架…
1. mapWith mapWith(i => i*10)((a,b) => b+2) (拿到分区号)(a是每次取到的RDD中的元素,b接收i*10的结果) 2. flatMapWith 类似mapWith,区别在于flatMapWith返回的是一个序列 3. mapPartitions 每次取到的是分区号 val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7),3) 对分区每个元素乘10 rdd1.mapPartitions(_.map(_ * 10))…
RDD是弹性分布式数据集,通常RDD很大,会被分成多个分区,保存在不同节点上. 那么分区有什么好处呢? 分区能减少节点之间的通信开销,正确的分区能大大加快程序的执行速度. 我们看个例子 首先我们要了解一个概念,分区并不等同于分块. 分块是我们把全部数据切分成好多块来存储叫做分块. 如上图b,产生的分块,每个分块都可能含有同样范围的数据. 而分区,则是把同样范围的数据分开,如图a 我们通过这个图片可以清楚的看到,我们通过把相同主键的数据连接. 经过有序分区的数据,只需要按照相同的主键分区 join…
一.学习Spark RDD RDD是Spark中的核心数据模型,一个RDD代表着一个被分区(partition)的只读数据集. RDD的生成只有两种途径: 一种是来自于内存集合或外部存储系统: 另一种是通过转换操作来自于其他RDD: 一般需要了解RDD的以下五个接口: partition分区,一个RDD会有一个或者多个分区 dependencies()RDD的依赖关系 preferredLocations(p)对于每个分区而言,返回数据本地化计算的节点 compute(p,context)对于分…
Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) 过滤, 返回一个新的RDD, 该RDD由经过func函数计算后返回值为true的输入元素组成 flatMap(func) 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) mapPartitions(func) 类似于map,但独立地在R…
大数据篇:Spark Spark是什么 Spark是一个快速(基于内存),通用,可扩展的计算引擎,采用Scala语言编写.2009年诞生于UC Berkeley(加州大学伯克利分校,CAL的AMP实验室),2010年开源,2013年6月进入Apach孵化器,2014年成为Apach顶级项目,目前有1000+个活跃者.就是说用Spark就对了. Spark支持Scala,Java,R,Python语言,并提供了几十种(目前80+种)高性能的算法,这些如果让我们自己来做,几乎不可能. Spark得到…
  第1章 Spark 整体概述 1.1 整体概念   Apache Spark 是一个开源的通用集群计算系统,它提供了 High-level 编程 API,支持 Scala.Java 和 Python 三种编程语言.Spark 内核使用 Scala 语言编写,通过基于 Scala 的函数式编程特性,在不同的计算层面进行抽象,代码设计非常优秀. 1.2 RDD 抽象   RDD(Resilient Distributed Datasets),弹性分布式数据集,它是对分布式数据集的一种内存抽象,通…
转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilient Distributed Dataset)是其最基本的抽象数据集,其中每个RDD是由若干个Partition组成.在Job运行期间,参与运算的Partition数据分布在多台机器的内存当中.这里可将RDD看成一个非常大的数组,其中Partition是数组中的每个元素,并且这些元素分布在多台机器中.…
一.架构设计 Driver根据用户代码构建计算流图,拆解出分布式任务并分发到 Executors 中去:每个Executors收到任务,然后处理这个 RDD 的一个数据分片子集 DAGScheduler根据用户代码构建 DAG:以 Shuffle 为边界切割 Stages:基于 Stages 创建 TaskSets,并将 TaskSets 提交给 TaskScheduler 请求调度 TaskScheduler 在初始化的过程中,会创建任务调度队列,任务调度队列用于缓存 DAGScheduler…
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下Spark提供的Transformations方法. 依赖关系 宽依赖和窄依赖 窄依赖(narrow dependencies) 窄依赖是指父RDD仅仅被一个子RDD所使用,子RDD的每个分区依赖于常数个父分区(O(1),与数据规模无关). 输入输出一对一的算子,且结果RDD的分区结构不变.主要是ma…
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). 键值对(PaiRDD) 1.创建 #在Python中使用第一个单词作为键创建一个pairRDD,使用map()函数 pairs = lines.map(lambda x:(x.split(" ")[0],x)) 2.转化(Transformation) 转化操作很多,有reduceByK…
大数据的浪潮风靡全球的时候,Spark火了.在国外 Yahoo!.Twitter.Intel.Amazon.Cloudera 等公司率先应用并推广 Spark 技术,在国内阿里巴巴.百度.淘宝.腾讯.网易.星环等公司敢为人先,并乐于分享.在随后的发展中,IBM.Hortonworks.微策略等公司纷纷将 Spark 融进现有解决方案,并加入 Spark 阵营.Spark 在IT业界的应用可谓星火燎原之势. 创新都是站在巨人的肩膀上产生的,在大数据领域Spark也不例外.在 Spark 出现前,要…
Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势: Spark提供了一个全面.统一的框架用于管理各种有着不同性质(文本数据.图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍…