关于torch.flatten的笔记】的更多相关文章

先看函数参数: torch.flatten(input, start_dim=0, end_dim=-1) input: 一个 tensor,即要被“推平”的 tensor. start_dim: “推平”的起始维度. end_dim: “推平”的结束维度. 首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 $[n]$ 的tensor,其中 $n$ 即 input 中元素个数. 如果我们要自己设定起始维度和结束维度呢? 我们…
深度学习框架 Torch 7 问题笔记 1. 尝试第一个 CNN 的 torch版本, 代码如下: -- We now have 5 steps left to do in training our first torch neural network -- 1. Load and normalize data -- 2. Define Neural Network -- 3. Define Loss function -- 4. Train network on training data -…
ndarray.flatten() 用法 用于返回一个折叠成一维的数组.该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的. 例子 # coding=utf-8 from numpy import * a = array([[1, 2], [3, 4], [5, 6]]) #array对象 b= mat([[1,2,3],[4,5,6]]) #mat对象 c = [[1, 2, 3], [4, 5, 6], ['a', 'b']] #list对象 print(a.…
[学习源]Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier   本文相当于对上面链接教程中自认为有用部分进行的截取.翻译和再注释.便于日后复习.修正和补充. 边写边查资料的过程中猛然发现这居然有中文文档--不过中文文档也是志愿者翻译的,仅仅是翻译,也没有对知识点的扩充,不耽误我写笔记.这篇笔记就继续写下去吧.附PyTorch 中文教程 & 文档 > 训练分类器 一.准…
VGG 主要有两种结构,分别是 VGG16 和 VGG19,两者并没有本质上的区别,只是网络深度不一样. 对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核的,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少). 比如,三个步长为 $1$ 的 $3 \times 3$ 卷积核的叠加,即对应 $7 \times 7$ 的感受野(即三个 $3 \times 3$ 连续卷积相当于一个 $7 \times 7$ 卷积),如果我们假设卷积输入输出的 channel…
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% import torch print(torch.__version__) # 查看CUDA GPU是否可用 a = torch.cuda.is_available() print(a) #%% # torch.randperm x = torch.randperm(6) print(x) #%% #…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 PyTorch 中网络模型的创建步骤.网络模型的内容如下,包括模型创建和权值初始化,这些内容都在nn.Module中有实现. 网络模型的创建步骤 创建模型有 2 个要素:构建子模块和拼接子模块.如 LeNet 里包含很多卷积层.池化层.全连接层,当我们构建好所有的子模块之后,按照一定的顺序拼接起来…
os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环境,但是Windows上的问题实在太多了,而且很多都是跟环境相关的,不具备普遍性,解决了也没有意义.所以真心不推荐Windows环境. 这里需要注意的是,ubuntu有桌面版本和服务器版本的区别,自己用的话,肯定是要桌面版本的,但是如果只是放在角落里做运算机又或者是桌面版本安装失败的时候,可以考虑服…
SqueezeNet 论文地址:https://arxiv.org/abs/1602.07360 和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫"fire module"的卷积方式. 设计策略 主要用1x1卷积核,而不是3x3. 减少3x3卷积核作用的channel. 推迟下采样的时间.以获取更大尺寸的feature map.这一点是处于精度的考虑.毕竟feature map的resolution越大,信息越丰富.下采样主要通过poo…
Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.…
DenseNet 论文传送门,这篇论文是CVPR 2017的最佳论文. resnet一文里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把不同层的feature map相应元素的值直接相加.而densenet是将channel维上的feature map直接concat在一起,从而实现了feature的复用.如下所示: 注意,是连接dense block内输出层前面所有层的输出,不是只有输出层的前一层 网络结构 首先实现DenseBl…
循环神经网络 本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型.我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符.循环神经网络引入一个隐藏变量HHH,用HtH_{t}Ht​表示HHH在时间步ttt的值.HtH_{t}Ht​的计算基于XtX_{t}Xt​和Ht−1H_{t-1}Ht−1​,可以认为HtH_{t}Ht​记录了到当前字符为止的序列信息,利用HtH_{t}Ht​对序列的下一个字符进行预测. 循环神经网络的构造 我们先看循环神经网络的具体构造.假设Xt∈Rn…
第四周:卷积神经网络 part 3 视频学习 语义分割中的自注意力机制和低秩重建 语义分割(Semantic Segmentation) 概念:语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的. 思路: 传统方法: TextonForest和基于随机森林分类器等语义分割方法 深度学习方法: Patch classification 全卷积方法(FCN) encoder-decoder架构 空洞卷积(Dilated/Atrous) 条件随机场 几种…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py 这篇文章首先会简单介绍一下 PyTorch 中提供的图像分类的网络,然后重点介绍 ResNet 的使用,以及 ResNet 的源码. 模型概览 在torchvision.model中,有很多封装好的模型. 可以分类 3 类: 经典网络 alexnet vgg resnet inception densenet go…
containers graph LR A["Containers"] --> B["nn.Sequetial"] B["nn.Sequetial"] --> C["wrap multiple network layers in sequence"] A["Containers"] --> D["nn.ModuleList"] D["nn.ModuleList…
经典超分辨率重建论文,基于稀疏表示.下面首先介绍稀疏表示,然后介绍论文的基本思想和算法优化过程,最后使用python进行实验. 稀疏表示 稀疏表示是指,使用过完备字典中少量向量的线性组合来表示某个元素.过完备字典是一个列数大于行数的行满秩矩阵,也就是说,它的列向量有无数种线性组合来表达列向量空间中的任意点.由于它的列数通常远大于行数,可以使用占比很小的列向量来表示特定的向量,我们称这种表示为稀疏表示. 那么如何获得这个字典呢?它在特定的任务下有特定的取值.和炼丹类似,我们先要用大量数据来训练这个…
VisualPytorch beta发布了! 功能概述:通过可视化拖拽网络层方式搭建模型,可选择不同数据集.损失函数.优化器生成可运行pytorch代码 扩展功能:1. 模型搭建支持模块的嵌套:2. 模型市场中能共享及克隆模型:3. 模型推理助你直观的感受神经网络在语义分割.目标探测上的威力:4.添加图像增强.快速入门.参数弹窗等辅助性功能 修复缺陷:1.大幅改进UI界面,提升用户体验:2.修改注销不跳转.图片丢失等已知缺陷:3.实现双服务器访问,缓解访问压力 访问地址:http://sunie…
简单分析一下主流的几种神经网络 LeNet LetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出 基本过程: 可以看到LeNet-5跟现有的conv->pool->ReLU的套路不同,它使用的方式是conv1->pool->conv2->pool2再接全连接层,但是不变的是,卷积层后紧接池化层的模式依旧不变. 代码: import torch.nn as nn import torch class LeNet(nn.Module…
[源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 目录 [源码解析] PyTorch 分布式(15) --- 使用分布式 RPC 框架实现参数服务器 0x00 摘要 0x01 综述 0x02 基础网络 0x03 辅助函数 0x04 启动 4.1 启动方式 4.2 启动脚本 4.3 启动参数服务器 4.4 启动worker 4.5 建立参数服务器 0x05 TrainerNet 5.1 总体代码 5.2 生成参数服务器 5.3 建立rref 5.4 前向…
目录 代码 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern recognition, 2015: 1-9. @article{szegedy2015going, title={Going deeper with convolutions}, author={Szegedy, Christian and Liu, Wei and Jia, Yangqing…
目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778. @article{he2016deep, title={Deep Residual Learning for Image Recognition}, author={He, Kaiming and Zhang,…
使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯度为主要内容进行学习. How can we install Torch? Torch在Linux,Windows,Mac等开发环境下都有特定的安装方法,首先搜索官方网页https://pytorch.org/,由下图所示我们可以根据自己适合的环境进行选择,我使用的是1.9.0版本Windows环境…
[源码分析] Facebook如何训练超大模型 --- (2) 目录 [源码分析] Facebook如何训练超大模型 --- (2) 0x00 摘要 0x01 回顾 1.1 ZeRO 1.1.1 ZeRO-1 1.1.2 ZeRO-2 1.1.3 ZeRO-3 1.2 DDP VS FSDP 0x02 总体逻辑 2.1 FSDP 2.2 原始ZeRO 1.2.1 初始化 1.2.2 前向传播 1.2.3 反向传播 2.3 FSDP代码 2.3.1 初始化 2.3.2 前向传播 2.3.3 分层优…
神经网络可以使用 torch.nn包构建. 现在你已经对autograd有所了解,nn依赖 autograd 定义模型并对其求微分.nn.Module 包括层,和一个返回 output 的方法 - forward(input). 例如,看看这个对数字图片进行分类的网络: convnet 这是一个简单的前馈网络.它接受输入,通过一层接一层,最后输出. 一个典型的神经网络训练过程如下: 定义神经网络,并包括一些可学习的参数(或权重) 通过输入数据集迭代 通过网络处理输入 计算损失(输出和真值的差距)…
你已经知道怎样定义神经网络,计算损失和更新网络权重.现在你可能会想, 那么,数据呢? 通常,当你需要解决有关图像.文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy array.然后将其转换为 torch.Tensor. 对于图像,例如Pillow,OpenCV 对于音频,例如scipy和librosa 对于文本,原生Python或基于Cython的加载,或NLTK和SpaCy 针对视觉领域,我们创建了一个名为 torchvision 的包,拥有用于ImageNet.C…
​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 在讲如何搭建之前,先回顾一下Transformer在计算机视觉中的结构是怎样的.这里以最典型的ViT为例. ​ 如图所示,对于一张图像,先将其分割成NxN个…
1. 几个工具函数 def box_corner_to_center(boxes): """从(左上,右下)转换到(中间,宽度,高度)""" x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = torch.stack((cx,…
一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch import nn # Mylinear继承Module class Mylinear(nn.Module): # 传入输入维度和输出维度 def __init__(self,in_d,out_d): # 调用父类构造函数 super(Mylinear,self).__init__() # 使用Pa…
下面为官方文档学习笔记    http://pytorch.org/docs/0.3.0/index.html 1.torch.Tensor from __future__ import print_function import torch import numpy as np import pandas as pd from pandas import Series,DataFrame ################Tensors Tensors Tensors##############…
Torch是什么 Torch是一个由Lua语言开发的深度学习框架,目前支持Mac OS X 和Ubuntu 12及以上,官网 ,github地址. 具有如下特点: 交互式开发工具 可视化式的工具 第三方库管理工具 丰富的开源软件 如waifu2,neural-style,neuraltalk2,char-rnn. 优缺点: 优点: 适合深度学习的初学者入门 缺点: 使用的Lua语言比较小众: 和Caffe一样,都是基于layer(层),不像Tensorflow,是基于符号计算的: 建议: 可以先…