08 DTFT变换的性质】的更多相关文章

DTFT变换的性质 线性性质 设 \[ x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})​ \] 则 \[ \begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\ &=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\i…
DFT变换的性质 线性性质 \[ \begin{aligned} y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+bw[n])W_N^{kn}\\ &=a\sum_{n=0}^{N-1}x[n]W_N^{kn}+b\sum_{n=0}^{N-1}w[n]W_N^{kn} \\ &=aX[k]+bW[k] \end{aligned} \] 时移性质 \[ \begin{aligned} x[n-n_0]&a…
直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对…
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ 3)ax(n)+by(n) aX(z)+bY(z) max[Rx-+Ry-]<|z|<min[Rx+,Ry+] 4)x(n+no) znoX(z) Rx-< |z| <Rx+ 5)anx(n) X(a-1z) |a|Rx-< |z| <|a|Rx+ 6)nx(n) Rx-&…
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系. 对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信…
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…
对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅立叶级数展开(Fourier Series,FS),它用于分析连续周期信号. FT:是傅立叶变换(Fourier Transform,FT),它主要用于分析连续非周期信号,由于信号是非周期的,…
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…
Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn} \] 当序列\(x[n]\)不满足收敛条件时,我们让\(x[n]\)乘以\(r^{-n}\)使它收敛 \[ \sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-jwn} \]…
DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其傅里叶反变换为 \[ x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega \] 一个能量有限的连续时间复信号的总能量\(\varepsilon_x\)为 \[ \begin{aligned} \vare…