用scikit-learn和pandas学习线性回归】的更多相关文章

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦.:) 这里我们用UCI大学公开的机器学习数据来跑线性回归. 数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant 数据的下载地址在这: http://archive.ics.uci.edu/ml/ma…
  用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整个流程,通过一个简单的回归的例子,可以看到: 数据的准备 ,数据的维度? 用哪个模型,如何训练,如何评价,可视化? 有一系列的东西需要去落地,推导理解十一方面,同时也要会用. 就这个回归的例子,和之前的 GMM 的例子很像,整个一套流程的东西很像,但是这里我们是用 sklearn 这个框架来完成的.…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为"二维矩阵.表格.字典",可以视为是由 Series 组成的字典. 创建 import pandas as pd data = { 'Frank' : [25, 'male', 'reading'], 'Lily' : [22, 'female', 'running'] } frame =…
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写上自己的学习记录,这里送给自己一句话,同时送给看这篇博客的人,共勉 当你迷茫的时候,当你饱受煎熬的时候,请停下来,想想自己学习的初衷,想想自己写博客的初衷,爱你所爱,行你所行,听从你心,无问西东. 好了,正文开始. pandas是做数据分析非常重要的一个模块,它使得数据分析的工作变得更快更简单.由于…
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 数据分组--〉归纳 程序示例: import numpy as np import pandas as pd # 读入数据 df=pd.read_csv('data1.txt') print('原始数据') print(df) #返回一个对象 group=df.groupby(df['产地']) #…
pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组,Series也可以创建多层索引. s = Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']]) # 输出 a 期中 59 期末 4…
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)…
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维array类似,二者与Python基本数据结构List很相似,Series能保存不同数据类型,字符串,boolbean值.数字等都能保存在Series中 DataFrame 二维的表格型数据结构.很多功能与R中的data frame类似.可以将DataFrame理解为Series的容器. Series类…
pandas  学习总结 作者:csj 更新时间:2018.04.02 shenzhen email:59888745@qq.com home: http://www.cnblogs.com/csj007523/p/8149929.html 1.import 2.export 3.create object 4.vewing,inspecting data 5.select data 6.data cleaning 7.filter,sort,groupby 8.join:merge,conca…
The Road to learn React书籍学习笔记(第二章) 组件的内部状态 组件的内部状态也称为局部状态,允许保存.修改和删除在组件内部的属性,使用ES6类组件可以在构造函数中初始化组件的状态.构造函数只会在组件初始化的时候调用一次 类构造函数 class App extends Component{ constructor(props){ super(props); } } 使用ES6编写的组件有一个构造函数时,需要强制地使用 super() 方法, 因为这个 App组件 是 Com…
The Road to learn React书籍学习笔记(第三章) 代码详情 声明周期方法 通过之前的学习,可以了解到ES6 类组件中的生命周期方法 constructor() 和 render() constructor() 构造函数只有在组件实例化并插入到 DOM 中的时候才会被调用.组件实例化的过程称为组件的挂载 mount render()方法也会在组件挂载过程中被调用,同时组件更新的时候也会被调用.每当组件的状态 state 和属性 props 改变的时候,组件的 render()…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- coding: utf-8 -*- # 统计未来3小时将要起飞的人数 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import Min…
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据的归一化 pandas学习(五)–pandas学习视频 归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理. 常见归一化算法 1.min-max标准化(Min-Max Normalizatio…
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据的归一化 pandas学习(五)–pandas学习视频 本篇文章主要利用NBA球员的薪资数据处理来进一步学习pandas这个数据处理工具. 1.获取数据并保存 本文从网站:下载网站 来获取2017-2018年各位NBA球员的薪资情况,代码如下: import pandas as pd…
学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据的归一化 pandas学习(五)–pandas学习视频 本章主要利用双色球开奖数据来学习pandas的DataFrame数据选取,Series的统计功能,以及matplotlib画柱状图. ball.py # -*- coding: utf-8 -*- import pandas as pd import numpy as np imp…
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据的归一化 pandas学习(五)–pandas学习视频 本文所有的环境:python :3.5 pandas:0.19.2 numpy:1.12.1,sqlalchemy 1.1.9 如果你的环境和这样不一样可能会有 细微差别. pandas支持的数据格式 pandas作为一个强大的数…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-8-pd-plot/ 本文有删改 这次我们讲如何将数据可…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-7-pd-merge/ 本文有删减 要点 pandas中…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-6-pd-concat/ 本文有删改 Concat pa…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-4-pd-nan/ 本文有删改 创建含 NaN 的矩阵…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-3-pd-assign/ 本文有删改 创建数据 我们可以…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-2-pd-indexing/ 有删改 下面例子是以 6X…
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学习笔记(五)合并 concat Pandas学习笔记(六)合并 merge Pandas学习笔记(七)plot画图 原文: https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-1-pd-intro/ Numpy 和 Pandas…
Part 1. Pandas初识 作为一款数据处理工具,Pandas本身集成了Numpy(数据计算处理)及matplotlib(绘图),其便捷的数据处理能力.方便的文件读写以及支持多维度的表示方式使其在数据分析方面被广泛使用. Pandas在数据结构上,常用的形式有三种:DataFrame.Series以及Panel.关于这三种数据结构,简单层面上可以将其理解为:Series接近一维数组的表示方式:DataFrame则接近于二维拥有行列索引的数据表格:Panel则接近多维度的数据表示方法. 总结…
NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy学习指南(第2版) 网络资料 100 Numpy Exercises Pandas Exercises accompany "Pandas for Everyone" 菜鸟教程:NumPy教程 NumPy Documentation NumPy 中文文档 Pandas 学习资料 书籍 Pa…