http://poj.org/problem? id=3101 大致题意:求n个运动周期不全然同样的天体在一条直线上的周期. 这题我是看解题报告写的,没想到选用參照物,用到了物理中的角速度什么的. 由于n个天体的周期已知,那么它们的角速度为vi = 2*pi/Ti,若统一选第0个天体为參照物,那么其余天体的相对速度vi' =  2*pi*(T0-Ti)/(T0*Ti)(把周期T同样的天体合为一个天体).则与第0个天体角度相差180度的时间为ti = (T0*Ti)/((T0-Ti)*2). 那么…
题目链接 要用大数,看了别人的博客,用java写的. 题意:求n个运动周期不完全相同的天体在一条直线上的周期. 分析:两个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个只需求这n个 分数的最小公倍数即可. 分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数   import java.util.*; import java.math.*; public class Main { public static int [] t = new int [1200];…
题意中的圈数和天数说反了 #include<stdio.h> __int64 gcd(__int64 a,__int64 b) {/* 比如4/3 3/5 通分20/15 9/15 所以这两个分数的最小公倍数为 180/15 (20,9的最小公倍数为180).. 然后约分下就好了..所以答案就是12*/ if(b==0) return a; return gcd(b,a%b); } int main() { __int64 t,n,m,a,b,c,d,ee,ff; scanf("%I…
题目链接:id=3101">点击打开链接 题目大意:有n个行星,给出每个行星的旋转的周期.问最少多少时间后n个行星会在一条直线上,初始点在一起,不存在全部的行星都有同一个周期 如果A行星的周期是t1.B行星的周期是t2(t2>t1),要在一条直线上,一定会执行的相差半个周期的倍数,时间(t/t2 - t/t1) % (1/2) = 0.也就是t*(t1-t2)/(t1*t2)%(1/2) = 0,要是时间最小.所以也就是差出一个半周期.也就是t = (t2-t1)/(t2*t1*2)…
/* 本题属于圆周追击问题: 假设已知两个圆周运动的物体的周期分别是a ,b, 设每隔时间t就会在同一条直线上 在同一条直线上的条件是 角度之差为 PI ! 那么就有方程 (2PI/a - 2PI/b)* t=PI 所以就有 t=ab/(2|a-b|); 如果有多个物体, 就会有多个t值,所以每隔 所有 t值的最小公倍数的时间所有的物体就会在同一直线上! 另外:如果分数的分子分别是 a1, a2, ...., 和 b1, b2, .... 那么所有分数的最小公倍数就是lcm(a1, a2, ..…
2个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个只需求这n个 分数的最小公倍数即可! 公式: 分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数 由于涉及到大数所以用java写的方便! import java.math.*; import java.util.*; public class Main { public static void main(String arg[]){ Scanner cin = new Scanner(System.in);…
题意:... 析:求周期就是这两个分数的最小公倍数,可以先通分,再计算分子的最小倍数. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstr…
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能完全看懂了,理解了再去做题,不要只记个公式.    *简单题:(直接用套公式就可以了)    pku2409 Let it Bead      #http://acm.pku.edu.cn/JudgeOnline/problem?id=2409    pku2154 Color   #http://acm.p…
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能完全看懂了,理解了再去做题,不要只记个公式. *简单题:(直接用套公式就可以了) pku2409 Let it Bead      http://acm.pku.edu.cn/JudgeOnline/problem?id=2409 pku2154 Co…
 1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,<组合数学>里面有讲.对于置换的幂运算大家可以参考一下潘震皓的那篇<置换群快速幂运算研究与探讨>,写的很好. *简单题:(应该理解概念就可以了) pku3270 Cow Sorting http://acm.pku.edu.cn/JudgeOnline/problem?id=3270 pku…