题目描述 丽江河边有nn家很有特色的客栈,客栈按照其位置顺序从 11到nn编号.每家客栈都按照某一种色调进行装饰(总共 kk 种,用整数 00 ~k-1k−1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费. 两位游客一起去丽江旅游,他们喜欢相同的色调,又想尝试两个不同的客栈,因此决定分别住在色调相同的两家客栈中.晚上,他们打算选择一家咖啡店喝咖啡,要求咖啡店位于两人住的两家客栈之间(包括他们住的客栈),且咖啡店的最低消费不超过 pp . 他们想知道总共有多少种选择住宿的方案,…
P1311 选择客栈 直通 思路: ①看题,我们可以发现一个显然的性质,即当最左边的客栈向右移动时,最右边的客栈时单调向右的,并且右端点往右的客栈也符合要求.(因为只要左侧有一个满足的,右边的自然可以选) 不妨将每种颜色的宾馆分别放到 vector 中. 然后在每个 vector 中枚举左端点,维护一个单调指针来确定右端点 (vector中的下标). 我们接下来就要快速判断一段区间是否合法,我们开一个ok数组,表示从i点开始最近的满足条件的位置(不考虑颜色). 这样的话转移就是: ok[i]=i…
原题 题目描述 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费. 两位游客一起去丽江旅游,他们喜欢相同的色调,又想尝试两个不同的客栈,因此决定分别住在色调相同的两家客栈中.晚上,他们打算选择一家咖啡店喝咖啡,要求咖啡店位于两人住的两家客栈之间(包括他们住的客栈),且咖啡店的最低消费不超过 p . 他们想知道总共有多少种选择住宿的方案,保证…
[信息学奥赛一本通]题解目录 $ \large -> OJ$ $ problem1000 $ \(Answer\) - > $ \large 1000$ $ problem1001 $ \(Answer\) - > $ \large 1001$ $ problem1002 $ \(Answer\) - > $ \large 1002$ $ problem1003 $ \(Answer\) - > $ \large 1003$ $ problem1004 $ \(Answer\…
目录 2019.1.27 #10082. 「一本通 3.3 例 1」Word Rings 题意 思路 #10083. 「一本通 3.3 例 2」双调路径 题意 思路 #10084. 「一本通 3.3 练习 1」最小圈 题意 思路 #10085. 「一本通 3.3 练习 2」虫洞 Wormholes 题意 思路 #10086. 「一本通 3.3 练习 3」Easy SSSP 题意 思路 #10087. 「一本通 3.4 例 1」Intervals 题意 思路 #10088. 「一本通 3.4 例…
[题目描述] NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先生.为了很好的完成这个任务,ZL先生首先研究了一些一元一次方程的实例: 4+3x=8 6a-5+1=2-2a -5+12Y=0 ZL先生被主管告之,在计算器上键入的一个一元一次方程中,只包含整数.小写字母 及十.一.=这三个数学符号(当然,符号“一”既可作减号,也可作负号).方程中并没有括号,也没有…
题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a0 的最大公约数是a1:2.x 和b0 的最小…
题目描述 nn 个小描述 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推. 游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第m…
#include<bits/stdc++.h> using namespace std; int n,ans,m,k,ans2; ],f[],d[][],num[][],tmp[],s[]; int read() { ; ') ; '; ') num=num*+c-'; return ff*num; } void write(int x) { ) { putchar('-'); x=-x; } )write(x/); putchar(x%+'); }//读入优化和输出优化是个好习惯!( ̄▽ ̄)…
我是传送门 这个题首先是先判断是等差还是等比数列 等差的话非常简单: 前后两个数是等差的,举个栗子: 3 6 9 12 这几个数,(我感觉 1 2 3 4并说明不了什么) 每次都加3嘛,很容易看出,第一个数是3 * 1,第二个是3 * 2....以此类推 第k个数 = (第2个数 - 第1个数) * k ; (z - y) * k % % 200907 的原因是题目要求 但是这样并不能过 hack一下 4 7 10 13 用原先的公式:(7 - 4) * 4 % 200907 = 12; 明显不…