VGG(2014),3x3卷积的胜利】的更多相关文章

目录 写在前面 网络结构 multi-scale training and testing 其他有意思的点 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 VGG(2014)网络出自paper<Very Deep Convolutional Networks for Large-Scale Image Recognition>,为ILSVRC2014 localization冠军和classification亚军方法(冠军为GoogLeNet),首次提交arX…
上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得了第2名的成绩(第一名是GoogLeNet,也是同年提出的).在论文<Very Deep Convolutional Networks for Large-Scale Image Recognition>中,作者提出通过缩小卷积核大小来构建更深的网络. Vgg网络结构 VGGnet是Oxford的…
源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Tensorflow搭建VGG19网络 3. 训练网络 参考文献 1. VGG介绍 1.1. VGG模型结构 VGG网络是牛津大学Visual Geometry Group团队研发搭建,该项目的主要目的是证明增加网络深度能够在一定程度上提高网络的精度.VGG有5种模型,A-E,其中的E模型VGG19是参加…
从LeNet到SENet——卷积神经网络回顾 从 1998 年经典的 LeNet,到 2012 年历史性的 AlexNet,之后深度学习进入了蓬勃发展阶段,百花齐放,大放异彩,出现了各式各样的不同网络,包括 LeNet.AlexNet.ZFNet.VGG.NiN.Inception v1 到 v4.Inception-ResNet.ResNet.WRN.FractalNet.Stochastic Depth.DenseNet.ResNeXt.Xception.SENet.SqueezeNet.N…
AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deeper, with more filters per layer, and with stacked convolutional layers. It consisted 11x11, 5x5,3x3, convolutions, max pooling, dropout, data augmenta…
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet.另外,在ImageNet历年冠军和相关CNN模型中,我简单介绍了ImageNet和历年冠军. AlexNet 贡献:ILSVRC2012冠军,展现出了…
本博客参考作者链接:https://zhuanlan.zhihu.com/p/41423739 前言: VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了).该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能.VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样. VGG原理 VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积…
1.VGGNet 模型简介 VGG Net由牛津大学的视觉几何组(Visual Geometry Group)和 Google DeepMind公司的研究员一起研发的的深度卷积神经网络,在 ILSVRC 2014 上取得了第二名的成绩,将 Top-5错误率降到7.3%.它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分.目前使用比较多的网络结构主要有ResNet(152-1000层),GooleNet(22层),VGGNet(19层),大多数模型都是基于这几个模型上改进,采用新…
1.GoogLeNet 模型简介 GoogLeNet 是2014年Christian Szegedy提出的一种全新的深度学习结构,该模型获得了ImageNet挑战赛的冠军. 2.GoogLeNet 模型的提出 1)在这之前的AlexNet.VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如过拟合.梯度消失.梯度爆炸等.2)解决这些问题的方法当然就是在增加网络深度和宽度的同时减少参数,为了减少参数,自然就想到将全连接变成稀疏连接.但是在实现上,全连接…
论文地址:<Very Deep Convolutional Networks for Large-Scale Image Recognition> 一.背景 LSVRC:大规模图像识别挑战赛 ImageNet Large Scale Visual Recognition Challenge 是李飞飞等人于2010年创办的图像识别挑战赛,自2010起连续举办8年,极大地推动计算机视觉发展.比赛项目涵盖:图像分类(Classification).目标定位(Object localization).…