首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Luogu 2822[NOIP2016] 组合数问题 - 数论
】的更多相关文章
Luogu 2822[NOIP2016] 组合数问题 - 数论
题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可以$O(1)$判断C(i,j)| k 然后用mk[i][j] 记录 C(i, j) | k , 并将它转化为二位前缀和, 每次查询只需要输出mk[ n ][ m ]即可 预处理时间复杂度:$O(NlnN + NM)$ 每次查询$O(1)$ 代码 #include<cstring> #include…
Noip2016组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数. 输入输出格式 输入格式: 第一行有两个整数t,k,其中t代表该测试点总共有多少…
[Noip2016]组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数. 输入输出格式 输入格式: 第一行有两个整数t,k,其中t代表该测试点总共有多少…
CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)
CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: \[C^m_n=\frac{n!}{m!(n-m)!}\] 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有…
Luogu P2822 [NOIp2016提高组]组合数问题 | 数学、二维前缀和
题目链接 思路:组合数就是杨辉三角,那么我们只要构造一个杨辉三角就行了.记得要取模,不然会爆.然后,再用二维前缀和统计各种情况下组合数是k的倍数的方案数.询问时直接O(1)输出即可. #include<iostream> #include<cstdio> #include<fstream> #include<algorithm> #include<string> #include<sstream> #include<cstrin…
NOIP2016 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k…
noip2016组合数问题
题目描述 组合数 Cnm 表示的是从 n 个物品中选出 m 个物品的方案数.举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数 Cnm 的一般公式: Cnm=m!/(n−m)!n! 其中n!=1×2×⋯×n:特别地,定义 0!=1. 小葱想知道如果给定 n,m 和 k,对于所有的 0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j) 满足 Cij 是 k 的倍数. 输入输出格式 输…
2559. [NOIP2016]组合数问题
[题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描述]. [输出格式] 输出到文件中. t行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m)中有多少对(i, j)满足C(j,i)是k的倍数. [样例1输入] 1 2 3 3 [样例1输出] 1 [提示] 在所有可能的情况中,只有C(1,2)是2的倍数. [样例2输入…
Luogu P1600[NOIP2016]day1 T2天天爱跑步
号称是noip2016最恶心的题 基本上用了一天来搞明白+给sy讲明白(可能还没讲明白 具体思路是真的不想写了(快吐了 如果要看,参见洛谷P1600 天天爱跑步--题解 虽然这样不好但我真的不想写了 直接放代码: #include<bits/stdc++.h> #include<vector> using namespace std; inline int read() { int ans=0; char last=' ',ch=getchar(); while(ch>'9'…
LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^nk\%i=n*k-\sum\limits_{i=1}^ni*\left\lfloor\dfrac{k}{i}\right\rfloor\),这样的话因为\(\left\lfloor\dfrac{k}{i}\right\rfloor\)的取值只有\(O(\sqrt n)\)级别,所以可以每次找到相等…